期刊文献+

变压器局部放电超高频信号多尺度网格维数的提取与识别 被引量:28

Multi-Scale Grid Dimension Extraction and Recognition of Ultra-High Frequency Signals of Transformer Partial Discharge
下载PDF
导出
摘要 提出了一种基于小波包多尺度分析和网格维数的变压器局部放电超高频信号模式识别的新方法,采用小波包多尺度变换提取局部放电超高频信号在多尺度上的小波系数,通过改进差盒计数法计算多尺度小波系数的网格维数,并将多尺度网格维数作为特征量用于局部放电超高频信号的识别。采用了4种典型放电模型产生局部放电,并采用3阶Hilbert分形天线检测局部放电超高频信号,提取的信号特征量输入径向基函数神经网络进行分类识别,识别正确率最低为70%。 A new approach for pattern recognition of ultra-high frequency (UHF) signals of transformer partial discharge (PD) based on multi-scale analysis of wavelet packet and grid dimensionality is proposed, in which the multi-scale transform of wavelet packet is used to extract wavelet coefficients of UHF PD signals and by means of improving difference box-counting method the grid dimensionality of multi-scale wavelet coefficients is calculated and the multi-scale grid dimensionality is taken as the characteristic quantity that is used in the recognition of UHF PD signals. Four typical discharge models are adopted to generate PD and a third-order Hilbert fractal antenna is used to detect UHF PD signals; the extracted characteristic quantities are input into radial basis function (RBF) neural network for the classification and recognition. Experiment results show that the lowest correct recognition rate of the proposed method is 70%.
出处 《电网技术》 EI CSCD 北大核心 2010年第2期159-163,共5页 Power System Technology
基金 教育部新世纪优秀人才支持计划资助(NCET-06-0763) 重庆市科委科技计划重大项目资助(CSTC2005AA6003)~~
关键词 变压器 局部放电 超高频信号 小波包 多尺度变换 网格维数 transformer partial discharge UHF signal wavelet packet multi-scale transform grid dimensionality
  • 相关文献

参考文献20

  • 1Satish L, Zaengl W S. Artificial neural networks for recognition cognition of 3-D partial discharge patterns[J]. IEEE Trans on Dielectrics and Electrical Insulation, 1994, 1(2): 265-275. 被引量:1
  • 2Hong T, Fang M T, Hilder D. PD classification by a modular neural network Based on task decomposition[J]. IEET Trans on Dielectrics and Electrical Insulation. 1996, 3(2): 207-212. 被引量:1
  • 3Hoof M, Leben B F, Patsch R. PD source identification with novel discharge parameters using counterpropagation neural network[J]. IEET Trans on Dielectrics and Electrical Insulation, 1997, 4(1): 17-32. 被引量:1
  • 4Contin A, Montanari G C, Ferraro C. PD source recognition by Weibull processing of pulse height distribution[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2000, 7(1): 48-58. 被引量:1
  • 5李剑,孙才新,杜林,李新,周湶.局部放电灰度图象分维数的研究[J].中国电机工程学报,2002,22(8):123-127. 被引量:43
  • 6Li Jian, Sun Caixin, Grzybowski S. Partial discharge image recognition using a new group of features[J]. IEEE Trans on Dielectrics andElectricallnsulation, 2006, 13(6): 1245-1253. 被引量:1
  • 7杨霁,李剑,孙才新,王有元,杨眉.基于小波多尺度变换的局部放电图像识别方法[J].电力系统自动化,2005,29(22):64-67. 被引量:8
  • 8Hans-Gerd K. Diagnosis of partial discharge signals using neural networks and minimum distance classification[J]. IEEE Trans on Electrical Insulation, 1993, 28(6): 1018-1024. 被引量:1
  • 9董毅,曹海翔,姜建国,刘德红.发电机定子绕组局部放电在线监测中来自励磁侧的干扰特性的研究[J].中国电机工程学报,1999,19(6):37-41. 被引量:14
  • 10Gulski E. Discharge pattern recognition in high voltage equipment[J]. IEE Proc. on Science, Measurements and Technology, 1995, 142(1):51-61. 被引量:1

二级参考文献94

共引文献340

同被引文献322

引证文献28

二级引证文献318

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部