期刊文献+

基于长时子带能量变化特征的语音活动检测

Voice Activity Detection Based on Long-Term Sub-Band Energy Variability Feature
下载PDF
导出
摘要 为了解决低信噪比条件下现有语音活动检测算法可靠性难以保证的问题,提出长时子带能量变化特征,度量短时谱子带能量沿时间轴的变化程度。基于TIMIT语音库采用高斯混合模型评价所提特征的性能。实验结果表明,在五种噪声的不同信噪比条件下,提出的语音活动检测算法性能优于传统的VAD。 Concerning the issue that the reliability of the current voice activity detection (VAD) algorithm is difficult to guarantee at low signal-to-noise ratio (SNR) conditions, this paper presented the measure of Iong-term sub-band energy variability to capture the sub-band energy of short-time spectrum varying over time. The performance of the feature was evaluated using Gaussian mixture models (GMMs) on the TIMIT corpus. Experimental results showcd the accuracy of the proposed VAD scheme was better than that obtained by the traditional VAD schemes under five types of noises and different SNR conditions.
作者 李宝岩
出处 《移动通信》 2016年第14期25-28,共4页 Mobile Communications
关键词 语音活动检测 长时子带能量 高斯混合模型 voice activity detection long-tem sub-band energy Gaussian mixture models (GMMs)
  • 相关文献

参考文献11

  • 1S H K Parthasarathi, P Rajan, H A Murthy. Voice Activity Detection using Group Delay Processing on Buffered Short-term Energy[A]. The Thirteenth National Conference on Communications (NCC)[C]. India, 2007: 169-172. 被引量:1
  • 2B Kotnik, Z Kacic, B Horvat, et al. A multi-conditional robust front-end feature extraction with a noise reduction procedure based on improved spectral subtraction algorithm[A]. 7th European Conference on Speech Communication and Technology[C]. 2001. 被引量:1
  • 3Itu-t Recommendation G729-Annex B. A Silence compression scheme for G.729 optimized for terminals conforming to Recommendation V.70[S]. 1996. 被引量:1
  • 4ETSI. Voice activity detector (VAD) for Adaptive Multi- Rate (AMR) speech traffic channels [S]. 1999. 被引量:1
  • 5J Sohn, N S Kim, W Sung. A statistical model-based voice activity detection[J]. IEEE Signal Processing Letters, 1999(1): 1-3. 被引量:1
  • 6Y D Cho, A Kondoz. Analysis and improvement of a statistical model-based voice activity detector[J]. IEEE Signal Processing Letters, 2001(10): 276-278. 被引量:1
  • 7M Fujimoto, K Ishizuka, T Nakatani. Study of integration of statistical model-based voice activity detection and noise suppression[A]. 9th Annual Conference of the International Speech Communication Association[C]. 2008. 被引量:1
  • 8J Ramirez, J C Segura, C Benitez, et al. Efficient voice activity detection algorithms using long-term speech information[J]. Speech Communication, 2004(3-4): 271- 287. 被引量:1
  • 9Fukuda T, O Ichikawa, M Nishimura. Long-Term Spectro- Temporal and Static Harmonic Features for Voice Activity Detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2010(5): 834-844. 被引量:1
  • 10VARGA A, STEENEKEN H J M. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems[J]. Speech Communication, 1993,12(3): 247-251. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部