期刊文献+

基于NSCT与双通道PCNN的多聚焦图像融合 被引量:2

Multi-focus Image Fusion Method Based on NSCT and Dual PCNN
下载PDF
导出
摘要 为提高多聚焦图像的清晰度及PCNN在图像融合方面的实用性,提出一种基于NSCT与双通道PCNN的多聚焦图像融合新方法.首先对来自同一场景的多聚焦图像分别进行NSCT变换;然后将基于SML的视觉特性对比度用于低频子带系数的融合;对于高频子带则通过改进的空间频率激励双通道PCNN进行融合,两个通道对应不同的连接强度,根据点火次数确定高频子带融合系数;最后进行逆NSCT变换得到最终融合图像.实验结果表明,该融合算法得到的融合图像具有较高的清晰度,在主观和客观评价指标上优于其他算法,具有较好的视觉效果. In order to improve the multi-focus image sharpness and the practicability of PCNN in the aspect of image fusion, a new multi-focus image fusion method was proposed based on nonsubsampled Contourlet transform (NSCT) and dual-channel pulse coupled neural network (DCPCNN). Firstly, multi-focus images which from the same scene were decomposed using NSCT respectively; and then visual properties contrast based on SML was used to fuse low frequency suhband coefficients; High frequency sub-band component fused through DCPCNN which motivated by modified spatial frequency. DCPCNN had two channels corresponding to different linking strength, high frequency sub-band fusion coefficient was determined according to the number of ignition. Finally, the fusion image achieved by inverse transformation of NSCT. The experimental results demonstrate that the proposed algorithm improves fusion image sharpness significantly, subjective and objective indicators are better than other fusion algorithms, having better visual effects.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第8期29-33,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61405144)
关键词 非下采样CONTOURLET变换 双通道PCNN 改进的空间频率 链接强度 多聚焦图像融合 nonsubsampled Contourlet transform (NSCT) dual-channel pulse coupled neural network (DCPCNN) modified spatial frequency linking strength multi-focus image fusion
  • 相关文献

参考文献10

二级参考文献47

  • 1肖伟,汪荣峰.基于非下采样contourlet变换与脉冲耦合神经网络的图像融合算法[J].计算机应用,2008,28(S2):164-167. 被引量:4
  • 2苗启广,王宝树.一种自适应PCNN多聚焦图像融合新方法[J].电子与信息学报,2006,28(3):466-470. 被引量:36
  • 3张岩,孙正兴,李文辉.基于方向经验模型分解的纹理合成[J].计算机辅助设计与图形学学报,2007,19(4):515-520. 被引量:3
  • 4Wilhelm K, Wilsmann T D, Sommer T, et al. CT angiography hemodynamically relevant to renal artery stenosis, Evaluation of AXIAL, MPR, MIP and SSD reconstruction procedures under standard investigation conditions [J]. ROFO: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin: (S1438-9029), 2000, 172(2): 161-167. 被引量:1
  • 5Do M N, Vetterli M. The Contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing (S1057-7149), 2005, 14(12): 2091-2106. 被引量:1
  • 6da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Transactions on Image Processing (S1057-7149), 2006, 15(10): 3089-3101. 被引量:1
  • 7WEI Huang, ZHONG Liang-Jing. Multi-focus image fusion using pulse coupled neural network [J]. Patter Recognition Letters (S1678-8655), 2007, 28(9): 1123-1132. 被引量:1
  • 8Zhang Qiang, Guo Bao-long. Multifocus image fusion using the nonsubsampled Contourlet transform [J]. Signal Processing (S0165-1684), 2009, 89(7): 1334-1346. 被引量:1
  • 9YI Chai, Huafeng Li, Xiaoyang Zhang. Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain [J]. Optik (S0030-4026), 2012, 123(7): 569-581. 被引量:1
  • 10Hill P R, Bull D R, Canagarajah C N. Image fusion using a new framework for complex wavelet transforms [C]// Proceedings of IEEE International Conference on Image Processing. Genova, Switzerland: Institute of Electrical and Electronics Engineers Computer Society, 2005: 1338-1341. 被引量:1

共引文献14

同被引文献15

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部