期刊文献+

基于NSCT与区域点火PCNN的医学图像融合方法 被引量:9

Medical Image Fusion Method Based on NSCT and Regional Fire PCNN
下载PDF
导出
摘要 为了进一步改善医学图像融合质量,提出一种基于NSCT(非下采样Contourlet变换)与区域点火PCNN(脉冲耦合神经网络)的医学图像融合方法。该方法在低频子带系数采用基于区域点火PCNN的融合规则,应用PCNN改进的简化模型,将低频子带系数作为信号激励PCNN网络,利用点火区域强度分析区域点火特性,根据区域点火特性确定低频子带融合系数;在选择带通方向子带系数时,充分利用非下采样Contourlet变换的方向特性,采用改进的拉普拉斯能量作为带通方向子带系数的融合规则。实验结果表明,该方法与传统融合方法相比,能够较好的保留图像的边缘和过渡区域信息,大幅度提高融合图像的质量。 In order to further improve the quality of medical image fusion, a novel method for medical image fusion was proposed based on NSCT (nonsubsampled contourlet transform) and regional fire PCNN (pulse coupled neural network). A fusion rule based on regional fire PCNN was adopted in low frequency sub-band coefficient. Firstly, the low frequency sub-band coefficient was input into PCNN network as the signal, through the application of the improved PCNN simplied model. Secondly, characteristics of regional fire was analysed by the regional fire intensity. Finally, the low frequency sub-band coefficient was determined by characteristics of regional fire," When choosing the bandpass directional sub-band coefficients, directional characteristics of NSCT was made best use of. A fusion rule based on improved energy of Laplacian was proposed in bandpass directional sub-band cosfficients. The experiment results show that the proposed method can greatly improve the quality of fusion image compared with traditional fusion methods with abundant edge and transition information.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第2期274-278,共5页 Journal of System Simulation
基金 国家自然科学基金资助项目(60962004 61162016)
关键词 非下采样CONTOURLET变换 脉冲耦合神经网络 点火区域强度 改进拉普拉斯能量 医学图像融合 nonsubsampled CONTOURLET transform (NSCT) pulse coupled neural network (PCNN) nonsubsampled contourlet transform (NSCT) pulse coupled neural network (PCNN) regional fire intensity improved energy of Laplacian medical image fusion
  • 相关文献

参考文献16

  • 1Wilhelm K, Wilsmann T D, Sommer T, et al. CT angiography hemodynamically relevant to renal artery stenosis, Evaluation of AXIAL, MPR, MIP and SSD reconstruction procedures under standard investigation conditions [J]. ROFO: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin: (S1438-9029), 2000, 172(2): 161-167. 被引量:1
  • 2晁锐,张科,李言俊.一种基于小波变换的图像融合算法[J].电子学报,2004,32(5):750-753. 被引量:153
  • 3Do M N, Vetterli M. The Contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing (S1057-7149), 2005, 14(12): 2091-2106. 被引量:1
  • 4da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Transactions on Image Processing (S1057-7149), 2006, 15(10): 3089-3101. 被引量:1
  • 5WEI Huang, ZHONG Liang-Jing. Multi-focus image fusion using pulse coupled neural network [J]. Patter Recognition Letters (S1678-8655), 2007, 28(9): 1123-1132. 被引量:1
  • 6Zhang Qiang, Guo Bao-long. Multifocus image fusion using the nonsubsampled Contourlet transform [J]. Signal Processing (S0165-1684), 2009, 89(7): 1334-1346. 被引量:1
  • 7陈浩..基于多尺度变换的多源图像融合技术研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2010:
  • 8闫敬文,屈小波著..超小波分析及应用[M].北京:国防工业出版社,2008:225.
  • 9YI Chai, Huafeng Li, Xiaoyang Zhang. Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain [J]. Optik (S0030-4026), 2012, 123(7): 569-581. 被引量:1
  • 10Hill P R, Bull D R, Canagarajah C N. Image fusion using a new framework for complex wavelet transforms [C]// Proceedings of IEEE International Conference on Image Processing. Genova, Switzerland: Institute of Electrical and Electronics Engineers Computer Society, 2005: 1338-1341. 被引量:1

二级参考文献35

共引文献194

同被引文献96

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部