期刊文献+

基于有效距离的多模态特征选择 被引量:6

Effective Distance Based Multi-modality Feature Selection
下载PDF
导出
摘要 在传统距离度量的基础上,提出利用有效距离进行特征选择,并用于多模态分类.为了更好地反映样本间全局和局部关系,提出基于有效距离的多模态特征选择方法.该方法针对样本间全局关系进行建模,实现基于有效距离的特征选择,从而增强所选特征的判别性.在ADNI、UCI数据集上进行的分类实验表明,与传统方法相比,文中方法能有效提高多模态数据的分类性能. Based on the traditional distance measurements, effective distance is adopted to implement feature selection for muhi-modality classification. To better reflect the global and local relationships among samples, an effective distance based multi-modality feature selection method is proposed. This method focuses on the global relationship among samples to build model, and effective distance based feature selection learning is realized. Thus, discriminative features are selected. To evaluate the efficiency of the proposed method, experiments are performed on the Alzheimer's disease neuroimaging initiative database and the UCI benchmark database. The experimental results demonstrate that compared with traditional feature selection methods using the Euclidean distance, the proposed method significantly improves the results of multi-modality classification.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第7期658-664,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61422204 61473149) 江苏省杰出青年自然科学基金项目(No.BK20130034) 南京航空航天大学基础研究基金项目(No.NE2013105) 南京航空航天大学研究生创新实验室开放基金项目(No.kfjj20151605)资助 高等院校博士学科点专项研究基金项目(No.20123218110009)~~
关键词 有效距离 特征选择 分类 多模态 Effective Distance, Feature Selection, Classification, Muhi-modality
  • 相关文献

参考文献19

  • 1LIU M X, SUN D, ZHANG D Q. Sparsity Score : A New Filter Fea- ture Selection Method Based on Graph// Proc of the 21st Interna- tional Conference on Pattern Recognition. Tsukula, Japan : IEEE, 2012 : 959-962. 被引量:1
  • 2FAN Z G, LU B L. Fast Recognition of Multi-view Faces with Fea- ture Selection//Proc of the 10th IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2005, 1: 76-81. 被引量:1
  • 3LIU F, WEE C Y, CHEN H F, et al. Inter-Modality Relationship Constrained Multi-modality Multi-task Feature Selection for Alzhei- mer's Disease and Mild Cognitive Impairment Identification. Neuro- Image, 2014, 84: 466-475. 被引量:1
  • 4JIE B, ZHANG D Q, CHENG B, et al. Manifold Regularized Multi-task Feature Selection for Muhi-modality Classification in Alzheimer's Disease//Proc of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention. Hei- delberg, Germany: Springer-Verlag, 2013 : 275-283. 被引量:1
  • 5BROCKMANN D, HELBING D. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena. Science, 2013, 342(6164): 1337-1342. 被引量:1
  • 6BERRY J K. Map Analysis: Understanding Spatial Patterns and Re- lationships [C/OL]. [2015-04-201. http://www, innovativegis. comfbasis/Books/MapAnalysis/Example_Chapter 5. pdf. 被引量:1
  • 7YANG J C, WRIGHT J, HUANG T, et al. Image Super-Resolution via Sparse Representation. IEEE Trans on Image Processing, 2010, 19( 11 ) : 2861-2873. 被引量:1
  • 8AHARON M, ELAD M, BRUCKSTEIN A, et al. K-SVD: An Al- gorithm for Designing Overcomplete Dictionaries for Sparse Repre- sentation. IEEE Trans on Signal Processing, 2005,54( 11 ) : 4311- 4322. 被引量:1
  • 9WRIGHT J, YANG A Y, GANESH A, et al. Robust Face Recogni- tion via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligenee, 2009, 31 (2) : 210-227. 被引量:1
  • 10ZELNIK-MANOR L, PERONA P. Self-tuning Spectral Clustering //SAUL L K, WELISS Y, BOTTOU L, eds. Advances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 2004 : 1601-1608. 被引量:1

同被引文献23

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部