期刊文献+

基于多模态特征的光-SAR图像融合配准算法 被引量:5

Optical-SAR Image Registration Using Multimodal Features Fusion Algorithm
下载PDF
导出
摘要 针对可见光和合成孔径雷达(SAR:Synthetic Aperture Radar)图像融合问题,在图像预处理基础上,从像素级特征、纹理级特征及边缘轮廓特征等多模态入手,优化现有同源图像的配准融合算法。利用改进的SURF(Speeded Up Robust Features)算子、纹理分析及轮廓提取算法,获取待融合图像的多模态和多尺度特征。通过模糊尺度标准化,使异源图像特征对能更好地适应特征间的差异性,从而能进行相似性的比较,结合模糊相关系数法,确保配准融合的精度,实现光-SAR图像信息的有效融合。与传统配准融合方法进行比较的实验结果表明,该算法可提高光-SAR配准的精度和适应性,使配准融合的平均准确率达到87.7%,可满足较高精度的配准融合需求。 According to the image fusion of optical and SAR (Synthetic Aperture Radar), the multimodal and multiscale features including pixel features, texture features and edge features were analyzed in order to improve the traditional homologous image registration and fusion algorithm. Then the improved SURF( Speeded Up Robust Features) operator, texture analysis and contour extraction algorithm were adopted to obtain the multimodal and multiscale features of the heterologous images. By standardization algorithm of the fuzzy scale and dimension, the differences between the feature pairs of the heterologous images were overcome, which made the matching of the feature pairs available. The accuracy of registration and fusion were ensured through the method of fuzzy correlation coefficient, and the registration and fusion of optieal-SAR images were completed. Finally, the modified algorithm was verified and compared with the traditional fusion methods. Experimental results show that the muhimodal registration and fusion algorithm can improve the precision and adaptability of optical-SAR registration. The average accuracy rate of registration and fusion can reach to 87.7%, which can satisfy the requirement of high precision registration and fusion.
作者 江晟
出处 《吉林大学学报(信息科学版)》 CAS 2015年第2期208-213,共6页 Journal of Jilin University(Information Science Edition)
基金 中国科学院知识创新工程国防科技创新资金资助项目(YYYJ-1122)
关键词 图像配准 合成孔径雷达 多模态特征 模糊聚类 image registration synthetic aperture radar(SAR) multimodal features fuzzy clustering
  • 相关文献

参考文献10

  • 1杨佐龙,王德功,李勇.基于小波域中心矩特征的SAR图像识别[J].吉林大学学报(信息科学版),2013,31(1):13-17. 被引量:4
  • 2黄世奇,刘代志.侦测目标的SAR图像处理与应用[M].北京:国防工业出版社,2009. 被引量:2
  • 3THIELE A, CADARIO E, SCHULZ K, et al. Building Recognition from Multi-Aspect High-Resolution in SAR Data in Urban Areas [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 45 (11 ) : 3583-3593. 被引量:1
  • 4刘向增,田铮,史振广,陈占寿.基于FKICA-SIFT特征的合成孔径图像多尺度配准[J].光学精密工程,2011,19(9):2186-2196. 被引量:12
  • 5ABDIKAN S, BALIK SANLI A F, BEKTAS BALCIK B F, et al. Fusion of SAR Images(PALSAR and RADARSAT-1 ) with Muhispectral SPOT Image: A Comparative Analysis of Resulting Images [C ] // ISPRS. Beijing, China: [ s. n. ], 2008 : 1197-1202. 被引量:1
  • 6HONG Gang, ZHANG Yun, BRYAN MERCER. A Wavelet and IHS Integration Method to Fuse High Resolution SAR with Moderate Resolution Muhispectral Images [ J ]. Journal of the American Society for Photogrammetry and Remote Sensing, 2009. 75(10) : 1213-1223. 被引量:1
  • 7SONG Z L, ZHANG J P, et al. Remote Sensing Image Registration Based on Retrofitted SURF Algorithm and Trajectories Generated from Lissajous Figures [J]. Geoscience and Remote Sensing Letters, IEEE, 2010, 7(3) : 491-495. 被引量:1
  • 8LU Yunfei, ZHAO Haimeng, LI Bo, et al. Multi-Spectral Remote Sensing Image Registration Based on SURF [ C ]//Proc of 2010 International Conference on Circuit & Signal Processing. Wuhan, China: [ s. n. ], 2010: 632-635. 被引量:1
  • 9DAVID G LOWE. Distinctive Image Featuresfrom Scale-Invariant Keypoints [ J ]. International Journal of Computer Vision, 2004, 60(3): 91-110. 被引量:1
  • 10HERBERT BAY, TINNE TUYTELAARS, LUC VAN GOOL. SURF: Speeded up Robust Features [ J]. Computer Vision- ECCV, 2006, 3951: 404-417. 被引量:1

二级参考文献30

  • 1BROWN L G. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24(4): 326-376. 被引量:1
  • 2LI H, MANJUNATH B S, MITRA S K. A contour-based approach to multisensor image registration [J]. IEEE Transactions on Image Processing, 1995, 4(3):320-334. 被引量:1
  • 3WANG SH, XIAO J, JIAO L CH, et al.. Fast and accurate automatic SAR image registration using seven invariant moments and improved chain coding of region boundaries [J]. SPIE,2007, 6787:1-7. 被引量:1
  • 4LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision.2004, 60(2):91-110. 被引量:1
  • 5ZHENG Y, CAO ZH G, YANG X. Multi-spectral remote image registration based on SIFT [J].Electronics Letters.2008, 44(2):107-108. 被引量:1
  • 6EL RUBE I A, SHARKS M A, SALEM A R. Image registration based on multiscale SIFT for remote sensing images. Proceedings of the Third International Conference on Signal Processing and Communication Systems, Omaha, USA: ICSPCS 2009:1-5. 被引量:1
  • 7KE Y, SUKTHANKAR R. PCA-SIFT: A more Distinctive Representation for Local Image Descriptors. Proceedings of International Conference on Pattern Recognition, Washington, USA: ICPR, 2004: 511-517. 被引量:1
  • 8MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, 27(10):1615-1630. 被引量:1
  • 9DUAN C, MENG X, TU C, et al.. How to make local image features more efficient and distinctive [J]. IET Computer Vision.2008, 2:178-189. 被引量:1
  • 10BAY H, ESS A, TUYTELAARS T, et al.. Speeded-up robust features (SURF) [J].Computer Vision and Image Understanding.2008, 110:346-359. 被引量:1

共引文献15

同被引文献30

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部