期刊文献+

新型灰狼优化算法在函数优化中的应用 被引量:25

Application of novel grey wolf optimization algorithm in function optimization
下载PDF
导出
摘要 针对灰狼优化算法在求解连续函数优化问题时精度不高、易出现早熟收敛等缺陷,提出一种改进的灰狼优化算法.该算法在初始种群个体时采用混沌序列方法,为算法全局搜索的多样性奠定基础.根据个体适应度值将种群分为两个子种群,分别执行不同的搜索方式,以平衡算法的开采能力和勘探能力.选取几个标准测试函数对算法性能进行测试,测试结果表明,与其他群智能优化算法相比,该算法在求解精度和收敛速度方面均具有较强的竞争力. Aimed at the defect of grey wolf optimization(GWO)algorithm for solving the problem of continuous function optimization such as low precision and easy to fall in premature convergence,an improved GWO algorithm is proposed.In this algorithm,chaotic sequence method is used onto the initiale individual of the population,laying a basis of diversity of global searching for the algorithm.The population is divided into two sub-populations based on the fitness of the individual and different searching modes are executed,respectively to balance the exploration ability and the exploitation ability of the algorithm.The performance of proposed algorithm is then tested with a couple of standard test functions.It is shown by the measurement result that compared with other swarm intelligence standard GWO algorithms,the proposed algorithm possesses a stronger competitive capability in connection with the accuracy of solution and its convergence speed.
作者 罗佳 唐斌
出处 《兰州理工大学学报》 CAS 北大核心 2016年第3期96-101,共6页 Journal of Lanzhou University of Technology
基金 贵州省科学技术基金(黔科合J字[2007]2204号)
关键词 灰狼优化算法 函数优化 群智能 混沌 grey wolf optimization algorithm function optimization swarm intelligence chaos
  • 相关文献

参考文献15

  • 1ISLAM S M,DAS S,GHOSH S,et al.An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization[J].IEEE Transactions on System,Man,and Cybernetics,2012,42(2):482-500. 被引量:1
  • 2龙文.自适应调整子种群个体数目的遗传算法及其应用[J].兰州理工大学学报,2013,39(4):80-84. 被引量:4
  • 3YAZDANI S,NUZAMABADI-POUR H,KAMYAB S.A gravitational search algorithm for multimodal optimization[J].Swarm and Evolutionary Computation,2014,14(1):1-14. 被引量:1
  • 4肖辉辉,段艳明.基于差分进化的布谷鸟搜索算法[J].计算机应用,2014,34(6):1631-1635. 被引量:12
  • 5王伟,龙文.基于交叉算子的改进人工蜂群算法[J].兰州理工大学学报,2015,41(1):101-106. 被引量:17
  • 6GAO W F,LIU S Y,HUANG L L.Enhancing artificial bee colony algorithm using more information-based search equations[J].Information Sciences,2014,270(3):112-133. 被引量:1
  • 7MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69(7):46-61. 被引量:1
  • 8EMARY E,ZAWBAA H M,GROSAN C,et al.Feature subset selection approach by gray-wolf optimization[C]//Proceedings of the International Afro-European Conference on Industrial Advancement.Berlin:Springer,2014:1-13. 被引量:1
  • 9EI-GAAFARY A A M,MOHAMED Y S,HEMEIDA A M,et al.Grey wolf optimization for multi input multi output system[J].Universal Journal of Communications and Networks,2015,3(1):1-6. 被引量:1
  • 10MADADI A,MOTLAGH M M.Optimal control of DC motor using grey wolf optimizer algorithm[J].Technical Journal of Engineering and Applied Sciences,2014,4(4):373-379. 被引量:1

二级参考文献31

  • 1Chen L, Aihara K. Global search ability of chaotic neural networks [J]. IEEE Trans on Circuits Systems, 1999, 46 (8) : 974-993. 被引量:1
  • 2Feng J, Ying W Y. Pattern search algorithm an its application research in three-dimensional component layout [J]. J of Wuhan University of Technology,2003,27(2) :280-284. 被引量:1
  • 3HOLLANG J H. Adaptation in natural and artificial system [M]. Cambridge Mass:MIT Press, 1975. 被引量:1
  • 4LEUNG Y W, WANG Y P. An orthogonal genetic algorithm with quantization for global numerical optimization [J]. IEEETransactions on Evolutionary Computation, 2001,5 ( 1 ) : 41-53. 被引量:1
  • 5KUSUM D, MANOJ T. A new crossover operator for real co- ded genetic algorithms [J]. Applied Mathematics and Compu- tation, 2007,188(1) : 895-911. 被引量:1
  • 6WANG Y, CAI Z X,ZHOU Y R,et al. Constrained optimiza- tion based on hybrid evolutionary algorithm and adaptive con- straint-handling technique [J]. Structural and Multidisciplinary Optimization, 2009,37 (4) : 395-413. 被引量:1
  • 7WANG Y P,DANG C Y. An evolutionary algorithm for glob- al optimization based on level-set evolution and Latin squares [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(5) :579-595. 被引量:1
  • 8TSAI J T,LIU T K,CHOU J H. Hybrid Taguchi-genetie al- gorithm for global numerical optimization [J]. IEEE Transac- tions on Evolutionary Computation,2004,8(4) :365-377. 被引量:1
  • 9李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535
  • 10钱富才,费楚红,万百五.利用混沌搜索全局最优的一种混合算法[J].信息与控制,1998,27(3):232-235. 被引量:62

共引文献222

同被引文献231

引证文献25

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部