期刊文献+

基于Tent映射的混沌混合粒子群优化算法 被引量:32

Chaotic hybrid particle swarm optimization algorithm based on Tent map
下载PDF
导出
摘要 为改善基本粒子群优化算法的寻优性能,通过算法混合,在粒子群优化算法中逐步引入优进策略和混沌搜索机制,以加强粒子群的局部寻优效率和全局寻优性能。并将粒子分为两类,分别执行不同的进化机制,实现协同寻优,从而构建为一种新的混沌混合粒子群优化算法。标准测试函数的仿真优化结果表明,该混合算法对较大规模的复杂问题具有较强的求解能力。算法寻优效率高、全局性能好、优化结果稳定,性能明显优于标准粒子群优化算法以及遗传算法等单一的随机搜索方法。 Aiming to improve the performance of standard particle swarm optimization algorithm, a new method-chaotic hybrid particle swarm optimization (CHPSO) algorithm is introduced through the technique of algorithm hybrid. By integrating eugenic strategy and chaotic optimization into particle swarm optimization algorithm, it greatly enhances the local searching efficiency and global searching performance. Furthermore, the particles are divided into two classes and perform different operations to co-evolve. Simulation results on standard test functions show that CHPSO is pretty efficient to solve high dimensional complex problems. It has high optimization efficiency, good global performance, and stable optimization outeomes. The performance of CHPSO is evidently better than PSO and SGA.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2007年第1期103-106,共4页 Systems Engineering and Electronics
基金 浙江省自然科学基金(Y404082) 浙江省教育厅重点科研计划项目(20030836)资助课题
关键词 优化算法 优进策略 混沌 TENT映射 optimization algorithm eugenic strategy chaos Tent map
  • 相关文献

参考文献10

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]∥ Proc.of IEEE International Conference on Neural Networks,1995:1942-1948. 被引量:1
  • 2Kennedy J,Eberhart R C.A new optimizer using particle swarm theory[C]∥ Proc.of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43. 被引量:1
  • 3Wolpert D H,Macready W G.No free lunch theorems for optimization[J].IEEE Trans.on Evolutionary Computation,1997,1(1):67-82. 被引量:1
  • 4Peram T,Veeramachaneni K,Mohan C K.Fitness-distance-ratio based particle swarm optimization[C]∥ Proc.of the IEEE Swarm Intelligence Symposium,Indianapolis,Indiana,USA,2003:174 -181. 被引量:1
  • 5Baskar S,Suganthan P N.A novel concurrent particle swarm optimization[J].IEEE Congress on Evolutionary Computation,Portland,Oregon,USA,2004,1:792-796. 被引量:1
  • 6胡上序,陈德钊编著..观测数据的分析与处理[M].杭州:浙江大学出版社,1996:350.
  • 7李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535
  • 8单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:195
  • 9程志刚,陈德钊,吴晓华.连续蚁群优化算法的研究[J].浙江大学学报(工学版),2005,39(8):1147-1151. 被引量:9
  • 10俞欢军,张丽平,陈德钊,胡上序.基于反馈策略的自适应粒子群优化算法[J].浙江大学学报(工学版),2005,39(9):1286-1291. 被引量:29

二级参考文献36

  • 1王笑蓉,吴铁军.基于Petri网仿真的柔性生产调度——蚁群-遗传递阶进化优化方法[J].浙江大学学报(工学版),2004,38(3):286-291. 被引量:18
  • 2Chen L, Aihara K. Global search ability of chaotic neural networks [J]. IEEE Trans on Circuits Systems, 1999, 46 (8) : 974-993. 被引量:1
  • 3Feng J, Ying W Y. Pattern search algorithm an its application research in three-dimensional component layout [J]. J of Wuhan University of Technology,2003,27(2) :280-284. 被引量:1
  • 4Chen L,中日青年国际学术讨论会论文集,1995年 被引量:1
  • 5卢侃,混沌动力学,1990年 被引量:1
  • 6KENNEDY J, EBERHART R C. Particle swarm optimization[A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway, NJ:IEEE, 1995: 1942- 1948. 被引量:1
  • 7KENNEDY J, EBERHART R C. A new optimizer using particle swarm theory [ A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C]. Nagoya, Japan: IEEE, 1995: 39- 43. 被引量:1
  • 8EBERHART R C, SIMPSON P K, DOBBINS R W.Computational Intelligence PC Tools[M]. Boston, MA..Academic Press Professional, 1996. 被引量:1
  • 9CLERC M, KENNEDY J. The particle swarm-explosion,stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(1): 58-73. 被引量:1
  • 10TRELEA I C. The particle swarm optimization algorithm:convergence analysis and parameter selection[J].Information Proeesslng Letters, 2003, 85(6): 317- 325. 被引量:1

共引文献748

同被引文献301

引证文献32

二级引证文献276

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部