摘要
Researchers seldom study optimum design of a six-degree-of-freedom(DOF) parallel manipulator with three legs based upon the given workspace.An optimal design method of a novel three-leg six-DOF parallel manipulator(TLPM) is presented.The mechanical structure of this robot is introduced,with this structure the kinematic constrain equations is decoupled.Analytical solutions of the forward kinematics are worked out,one configuration of this robot,including position and orientation of the end-effector are graphically displayed.Then,on the basis of several extreme positions of the kinematic performances,the task workspace is given.An algorithm of optimal designing is introduced to find the smallest dimensional parameters of the proposed robot.Examples illustrate the design results,and a design stability index is introduced,which ensures that the robot remains a safe distance from the boundary of sits actual workspace.Finally,one prototype of the robot is developed based on this method.This method can easily find appropriate kinematic parameters that can size a robot having the smallest workspace enclosing a predefined task workspace.It improves the design efficiency,ensures that the robot has a small mechanical size possesses a large given workspace volume,and meets the lightweight design requirements.
Researchers seldom study optimum design of a six-degree-of-freedom(DOF) parallel manipulator with three legs based upon the given workspace.An optimal design method of a novel three-leg six-DOF parallel manipulator(TLPM) is presented.The mechanical structure of this robot is introduced,with this structure the kinematic constrain equations is decoupled.Analytical solutions of the forward kinematics are worked out,one configuration of this robot,including position and orientation of the end-effector are graphically displayed.Then,on the basis of several extreme positions of the kinematic performances,the task workspace is given.An algorithm of optimal designing is introduced to find the smallest dimensional parameters of the proposed robot.Examples illustrate the design results,and a design stability index is introduced,which ensures that the robot remains a safe distance from the boundary of sits actual workspace.Finally,one prototype of the robot is developed based on this method.This method can easily find appropriate kinematic parameters that can size a robot having the smallest workspace enclosing a predefined task workspace.It improves the design efficiency,ensures that the robot has a small mechanical size possesses a large given workspace volume,and meets the lightweight design requirements.
基金
Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)