期刊文献+

一些拉普拉斯谱确定的图

Some Graphs Determined byTheir Laplacian Spectrum
下载PDF
导出
摘要 如果与图G同拉普拉斯谱的图都与图G同构,则称图G由它的拉普拉斯谱确定.给出了三类基图为B(P_3,P_3,P_3)(即连接2点的3条长为2的内不交的路)的连通二部双圈图类H(n;n_1),H(n;n_1,n_2)和B(n;n_1,n_2).证明了H(n;n1),H(n;n_1,n_2)和B(n;n_1,n_2)是拉普拉斯谱确定的,且与完全图经并接运算后所得图也是拉普拉斯谱确定的. A graph is said to be determined by its Laplacian spectrum,if there is no other nonisomorphic graph with the same Laplacian spectrum.Three types of bicyclic bipartite graphs H(n;n_1),H(n;n_1,n_2)and B(n;n_1,n_2),which all have the base of B(P_3,P_3,P_3)(three disjoint paths of length2 between two vertices)were studlied.It is proved that the graphs are determined by their Laplacian spectrum,and the graphs obtained by the join of complete graphs and the above three type bicyclic graphs are also determined by their Laplacian spectrum.
出处 《上海理工大学学报》 CAS 北大核心 2016年第3期223-229,共7页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11201303) 上海市自然科学基金资助项目(12ZR1420300)
关键词 二部双圈图 拉普拉斯矩阵 拉普拉斯谱确定 bipartite bicyclic graph Laplacian matrix determination by the Laplacian spectrum
  • 相关文献

参考文献16

  • 1VON COLLATZ L, SINCGOWITZ U. Spektren endlicher grafen [ J]. Abhandlungen aus dem Mathematischen Seminar der Universit Hamburg, 1957, 21 (1): 63 - 77. 被引量:1
  • 2KAC M. Can one hear the shape of a drum[J]. The Americam Mathmatical Monthly, 1966,73 (4) : 1 - 23. 被引量:1
  • 3VAN DAM E R, HAEMERS W H. Which graphs are determined by their spectrum? [J]. Linear Algebra and its Applications, 2003,373 (1) : 241 - 272. 被引量:1
  • 4WANG W, XU C X. On the spectral characterization ofT-shape trees[J]. Linear Algebra and its Applications, 2006,414(2/3) ..492- 501. 被引量:1
  • 5LIU X G,ZHANG Y P,LU P L. One special double star like graph is determined by its Laplacian spectrum[J]. Applied Mathematics Letters, 2009,22 (4) .. 435 - 438. 被引量:1
  • 6WANG J F, HUANG Q X, BEIARIX) F, et al. On the spectral characterizations of oo-graph [ J]. Discrete Mathematics, 2010,310(13/14) : 1854 - 1855. 被引量:1
  • 7LIU F J, HUANG Q X. Laplacian spectral characterization of 3-rose graphs [ J ]. Linear Algebra and its Applications, 2013,439(10) : 2914 - 2920. 被引量:1
  • 8HAEMERS W H, LIU X G, ZHANG Y P. Spectral characterizations of lollipop graphs[J]. Linear Algebra and its Applications, 2008,428 ( 11 / 12) : 2415 - 2423. 被引量:1
  • 9BOULET R. Spectral characterizations of sun graphs and broken sun graphs[J]. Discrete Mathematics and Theoretical Computer Science, 2009,11 (2) .. 149 - 160. 被引量:1
  • 10LUPL, LIU X G, YUAN Z T, et al. Spectral characterizations of sandglass graphs [ J ] Applied Mathematics Letters, 2009,22 (8) : 1225 - 1230. 被引量:1

二级参考文献18

  • 1Cvetkovi D,Rowlinson P,Simic S.Signless Laplacian of finite graphs[J].Linear Algebra and its Applications,2007,423(1):155-171. 被引量:1
  • 2Wang J F,Huang Q H.Some results on the signless Laplacians of graphs[J].Applied Mathematics Letters,2010,23 (9):1045-1049. 被引量:1
  • 3MirzakhahM,Kiani D.Some results on signless Laplacian coefficients of graphs[J].Linear Algebra and its Applications,2012,437(9):2243-2251. 被引量:1
  • 4Oliveira C S,Maia de Abreu N M,Jurkiewicz S.The characteristic polynomial of the Laplacian of graphs in (a,b)-linear classes[J].Linear Algebra and its Applications,2002,356 (1/2/3):113-121. 被引量:1
  • 5He C X,Shan H Y.On the Laplacian coefficients of bicyclic graphs[J].Discrete Mathematics,2010,310 (23):3404-3412. 被引量:1
  • 6Mohar B.On the Laplacian coefficients of acyclic graphs[J].Linear Algebra and its Applicatons,2007,422 (2/3):736-741. 被引量:1
  • 7Ilic A,Ilic M.Laplacian coefficients of trees with given number of leaves or vertices of degree two[J].Linear Algebra and its Applications,2009,431(11):2195-2202. 被引量:1
  • 8Stevanovic D,Ilic A.On the Lapladan coefcients of unicyclic graphs[J].Linear Algebra and its Applications,2009,430 (8/9):2290-2300. 被引量:1
  • 9Schwenk A J. Computing the characteristic polynomial of a graph[J]. Lecture Notes in Mathematics, 1974, 406 : 153 - 172. 被引量:1
  • 10Cardoso D M,de Freitas M A A, Martins E A, et al. Spectra of graphs obtained by a generalization of the join graph operation[J]. Discrete Mathematics, 2013, 313(5) :733- 741. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部