摘要
如果与图G同拉普拉斯谱的图都与图G同构,则称图G由它的拉普拉斯谱确定.给出了三类基图为B(P_3,P_3,P_3)(即连接2点的3条长为2的内不交的路)的连通二部双圈图类H(n;n_1),H(n;n_1,n_2)和B(n;n_1,n_2).证明了H(n;n1),H(n;n_1,n_2)和B(n;n_1,n_2)是拉普拉斯谱确定的,且与完全图经并接运算后所得图也是拉普拉斯谱确定的.
A graph is said to be determined by its Laplacian spectrum,if there is no other nonisomorphic graph with the same Laplacian spectrum.Three types of bicyclic bipartite graphs H(n;n_1),H(n;n_1,n_2)and B(n;n_1,n_2),which all have the base of B(P_3,P_3,P_3)(three disjoint paths of length2 between two vertices)were studlied.It is proved that the graphs are determined by their Laplacian spectrum,and the graphs obtained by the join of complete graphs and the above three type bicyclic graphs are also determined by their Laplacian spectrum.
出处
《上海理工大学学报》
CAS
北大核心
2016年第3期223-229,共7页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(11201303)
上海市自然科学基金资助项目(12ZR1420300)
关键词
二部双圈图
拉普拉斯矩阵
拉普拉斯谱确定
bipartite bicyclic graph
Laplacian matrix
determination by the Laplacian spectrum