期刊文献+

Wenger图的控制数

Domination Number of Wenger Graph
下载PDF
导出
摘要 Wenger图H_m(q)是定义在有限域F_q上的q-正则二部图.根据二部图G=(X∪Y,E)的控制数为Y在X中的控制数与X在Y中的控制数之和,采用矩阵运算的方法在H_m(q)中通过构造含点数最少的控制集,说明了这两个控制数应该相等,从而确定了Wenger图的控制数. Wenger's graph H_m(q)is a q-regular bipartite graph in the field F_q.Considering that the domination number of a bipartite graph G=(X∪Y,E)is the sum of Y's domination number in X and X's domination number in Y,by using the matrix operation,the domination set of H_m(q)with minimum cardinality was constructed.It is proved that the two domination numbers are equal,and then the domination number of H_m(q)was determined.
作者 刘凌
出处 《上海理工大学学报》 CAS 北大核心 2015年第6期517-519,共3页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11101284 11201303 11301340) 上海市自然科学基金资助项目(12ZR1420300) 沪江基金资助项目(B14005)
关键词 二部图 Wenger图 控制集 控制数 bipartite graph Wenger graph domination set domination number
  • 相关文献

参考文献10

  • 1Wenger R.Extremal graphs with no C4,C6 or C10\'s.[J].Journal of Combinational Theory Series B,1991,52(1):113-116. 被引量:1
  • 2Shao J Y,He C X,Shan H Y.The existence of even cycles with specific lengths in wenger\'s graph[J].Acta Mathematicae Applicatae Sinica,English Series,2008,24(2):281-288. 被引量:1
  • 3Lazebnik F,Thomason A,Wang Y.On some cycles in Wenger Graphs[EB/OL].[2014-12-25].http://www.math.udel.edu/~lazebnik/papers/LazebnikTho-masonWang2014 Submitted.pdf. 被引量:1
  • 4周敏,何常香.单圈图依次小Q-特征值排序[J].上海理工大学学报,2013,35(1):21-26. 被引量:1
  • 5徐丽珍,何常香.双圈图的无符号拉普拉斯特征多项式的系数[J].上海理工大学学报,2014,36(1):12-14. 被引量:2
  • 6沈富强,吴宝丰.最小Q-特征值为给定整数的一类图[J].上海理工大学学报,2014,36(5):425-428. 被引量:4
  • 7Viglione R.On the diameter of wenger graphs[J].Acta Applicandae Mathematica,2008,104(2):173-176. 被引量:1
  • 8Bondy J A,Murty U S R.Graph theory and its applications[M].New York:MacMillan Press,1976. 被引量:1
  • 9张先迪,李正良主编..图论及其应用[M].北京:高等教育出版社,2005:299.
  • 10彭茂..图的控制集的一些相关问题的研究[D].上海交通大学,2008:

二级参考文献12

  • 1Cvetkovi D,Rowlinson P,Simic S.Signless Laplacian of finite graphs[J].Linear Algebra and its Applications,2007,423(1):155-171. 被引量:1
  • 2Wang J F,Huang Q H.Some results on the signless Laplacians of graphs[J].Applied Mathematics Letters,2010,23 (9):1045-1049. 被引量:1
  • 3MirzakhahM,Kiani D.Some results on signless Laplacian coefficients of graphs[J].Linear Algebra and its Applications,2012,437(9):2243-2251. 被引量:1
  • 4Oliveira C S,Maia de Abreu N M,Jurkiewicz S.The characteristic polynomial of the Laplacian of graphs in (a,b)-linear classes[J].Linear Algebra and its Applications,2002,356 (1/2/3):113-121. 被引量:1
  • 5He C X,Shan H Y.On the Laplacian coefficients of bicyclic graphs[J].Discrete Mathematics,2010,310 (23):3404-3412. 被引量:1
  • 6Mohar B.On the Laplacian coefficients of acyclic graphs[J].Linear Algebra and its Applicatons,2007,422 (2/3):736-741. 被引量:1
  • 7Ilic A,Ilic M.Laplacian coefficients of trees with given number of leaves or vertices of degree two[J].Linear Algebra and its Applications,2009,431(11):2195-2202. 被引量:1
  • 8Stevanovic D,Ilic A.On the Lapladan coefcients of unicyclic graphs[J].Linear Algebra and its Applications,2009,430 (8/9):2290-2300. 被引量:1
  • 9刘颖.树的代数连通度极限点的排序(英文)[J].黑龙江大学自然科学学报,2008,25(1):103-106. 被引量:3
  • 10刘颖,邵嘉裕,袁西英.具有完美匹配树的代数连通度的排序(英文)[J].数学进展,2008,37(3):269-282. 被引量:3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部