期刊文献+

一种改进的奇异值降噪阶次选取方法用于紫外光谱信号去噪的研究 被引量:7

Research on Denoising Ultraviolet Spectrum Signal with An Improved Effective Singular Value Selection Method
下载PDF
导出
摘要 光谱去噪是光谱检测的重要环节。针对光谱信号易受光谱仪热噪声、现场机械振动以及随机噪声等因素影响,而在线监测系统要求减少人为参数选择对去噪效果的影响,提出利用奇异值分解(SVD)理论对光谱信号去噪。提出一种改进的降噪阶次选取方法:指定奇异值差分谱最大峰值点θ1为所选阶次下界;利用奇异值、奇异值差分谱综合信息选取阶次上界θ2;将区间θ1~θ2定义为模糊区域,通过模糊C均值聚类求取隶属度,赋予模糊区域内奇异值相应的权重系数。用所提方法对不同信噪比下SO2紫外光谱信号去噪,将信噪比、均方根误差、波形相似系数、平滑度指标用于去噪效果的评价。去噪结果表明:所提方法完全基于数据驱动,具有较好的去噪效果,能够真实的恢复原始信号。 Spectrum denoising is an important part of spectrum detection .As we know ,spectral signal is susceptible to thermal noise ,mechanical vibration on site and random noise ,etc .However ,online monitoring systems require to reduce the impact of parameter selection caused by human operation on denoising ,so a method based on singular value decomposition is proposed to denoise spectrum signal .An improved effective singular value selection method is also proposed .First ,the author specify the maximum peak of the difference spectrum of singular value for the lower bound which named θ1 ,using the integrated information of singular value and its difference spectrum to select the upper bound ,which is called θ2 .The interval θ1 ~ θ2 is defined as a fuzzy area .Then ,the membership is obtained with Fuzzy C-means clusting and corresponding weight coefficients to the singular values in the fuzzy area are given .Finally ,the proposed method is used to denoise UV spectrum signal with different signal to noise ratio .The signal to noise ratio ,root mean square error ,normalied correlation coefficient and smoothness radio are used to evaluate the result of denoising .The result shows that :based on data-driven ,the proposed method has a good denoising effect , which can effectively restore the original signal .
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第7期2139-2143,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(50677047) 中国南方电网科技项目(K-GX2011-019) 湖北省科学条件专项基金项目(2013BEC010)资助
关键词 光谱去噪 奇异值分解 模糊C均值聚类 Spectra denoising Singular value decomposition Fuzzy C-means clusting
  • 相关文献

参考文献14

二级参考文献85

共引文献511

同被引文献100

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部