期刊文献+

反软子格 被引量:1

Anti-soft Sublattices
原文传递
导出
摘要 首先给出反软子格的新概念以及两个反软子格分别在限制并和或的运算下仍然是反软子格。其次利用软集的反对偶给出反软子格的等价刻画。再次利用软集的反扩张原理给出反软子格在同态映射下像与原像的性质。最后在全体反软子格组成的集合H上引入链条件并讨论H是阿丁的或诺特的充要条件。 Firstly,the definition of anti-soft sublattices is given,and we give that the restricted union and OR of two anti-soft sublattices are still anti-soft sublattices.Then we give the equivalent characterizations of anti-soft sublattices based on the anti-dual of soft set.In addition,based on the anti-extension principle,the properties of their image and inverse image are given under the homomorphic mapping.Finally,we introduce the condition of chain over H which is consisted of all of the anti-soft sublattices and discuss the necessary sufficient condition that His Artin or Noether.
机构地区 江南大学理学院
出处 《模糊系统与数学》 CSCD 北大核心 2016年第1期20-27,共8页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11371174 61170121) 江苏省普通高校研究生科研创新计划项目(CXLX137_33)
关键词 反软子格 软集 反对偶 同态像 Anti-soft Sublattice Soft Set Anti-dual Homomorphic Image Image
  • 相关文献

参考文献43

  • 1Molodtsov D. Soft set theory-- first results[J]. Computers and Mathematics with Applications, 1999,37 : 19 - 31. 被引量:1
  • 2Maji P K, Biswas R, Roy A R. Soft set theory[J]. Computers and Mathematics with Applications,2003,45 : 555- 562. 被引量:1
  • 3Maji P K, Roy A R. An application of soft sets in a decision making problem[J]. Computers and Mathematics with Applications, 2002,44 : 1077 - 1083. 被引量:1
  • 4Aktas H, et al. Soft sets and soft groups[J]. Information Sciences,2007,177:2726-2735. 被引量:1
  • 5Feng F, Jun Y B, Zhao X Z. Soft semirings[J]. Computers and Mathematics with Applications, 2008,56:2621 -2628. 被引量:1
  • 6Jun Y B. Soft BCK/BCI-algebras[J]. Computers and Mathematics with Applications,2008,56:1408-1413. 被引量:1
  • 7Jun Y B, Park C H. Applications of soft sets in ideal theory of BCK/BCI-algebras[J].Information Sciences,2008, 178:2466-2475. 被引量:1
  • 8Sezgin A, Atagtin A O. Soft groups and normalistic soft groups[J].Computers and Mathematics with Applications,2011,62:685-698. 被引量:1
  • 9Aygunoglu A, Aygun H. Introduction to fuzzy soft groups[J]. Computers and Mathematics with Applications,2009, 58:1279-1286. 被引量:1
  • 10Feng F, et al. Soft sets combined with fuzzy sets and rough sets: A tentative approach[J]. Soft Computers,2010, 14:899-911. 被引量:1

二级参考文献172

共引文献77

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部