摘要
通过提取和构造J_(max)-r曲线,对最佳滚子半径r*存在性给予几何直观解释;通过推导建立F_n(φ)解析公式、构建空间坐标系O-rr_0J_(max)和堆积生成"峡谷曲面Σvalley"并探究其形态特征,揭示出谷底脊线{P*}和特别谷底点P**,据此给出机构最小尺寸解存在性的几何直观解释和证明,根据谷底脊线{P*}的单调变化特性,提出求解r_0**的区间-中分/收缩解法。以一个设计案例为例,应用Matlab软件优越的计算、求解和图显功能,验证了理论分析、推理的严谨性和正确性,得到了机构最小尺寸解。
A geometric intuition explanation was given to the existence of best roller radius r*by extracting and constructing curve Jmax -r based on the important theory in literature. The Spatial coordinate system of O-rr0 Jmax and accumulation generated valley surface Σ valleywere established according to the derivation of analytical equation of Fn(φ) to explore the morphological features. The bottom ridge {P*} and special bottom point P**were revealed. The geometric intuition interpretation and proof of the minimal size solution existence were given according to this. The interval-dividion/shrink method was proposed to solve the r0**according to the monotonous feature of bottom spine{P*}. The theoretical analysis, preciseness and correctness of inference were verified according to a design case using the superior calculation, solution and image display of Matlab. The minimal size solution of mechanism was obtained.
出处
《机械设计》
CSCD
北大核心
2016年第6期96-100,共5页
Journal of Machine Design
基金
国家自然科学基金资助项目(51175224&51475209)
福建省自然科学基金资助项目(2010J01302&2006J0169)
福建省大学生创新创业训练计划资助项目(201510390041)