期刊文献+

基于在线随机蕨分类器的实时视觉感知系统 被引量:5

Real Time Visual Perception System Based on Online Fern Classifier
下载PDF
导出
摘要 本文针对不同成像条件下,目标姿态变化对系统检测性能的影响,提出一种具有自主学习能力的视觉感知系统.该系统能在执行检测任务的同时,通过快速的自主学习提高检测性能,并保持实时目标检测速度.系统包括了目标检测模块及在线学习样本自动获取、标注模块.针对目标检测模块为满足系统自主学习需求,提出随机蕨分类器的在线学习方法,使目标检测模块可持续自我更新,提高检测性能;针对样本自动获取、标注模块则提出最近邻分类器辅助的双层级联标注方法.此外,本文提出自主在线学习框架,整个学习过程不用准备初始训练样本集,通过人工选定一个待检测目标即可进行无需干预的自适应学习,逐渐提高检测性能.实验表明,该方法在多种监控场景中均有较强的自适应能力和较好的目标检测效果. A novel online learning object detection system is proposed, which can self learning and improve its detec- tion performance wihout human-annotated training data. The system is composed of a object detection module and a sample labeling module. Online fern classifier is used in the object detection module because of its fast online learning speed. Conse- quentely, our system can learn automatically and detect objects in the real time. Samples, which are used to train the classifier online, are acquired and labeled automatically from a two stages cascade method in the sample labeling module. Instead of training initial classifier from some manual labeled training samples like other online learning detection frameworks, our system can learn automatically after specifying the object to be detected. This can greatly reduce the efforts of labelers. Experimental results on several video datasets are provided to show the adaptive capability and high detection rate of our system.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第5期1139-1148,共10页 Acta Electronica Sinica
基金 国家自然科学基金(No.61302137 No.61271328 No.41202232) 湖北省自然科学基金(No.2013CFB403) 武汉市晨光计划项目(No.2014070404010209)
关键词 在线学习 视觉感知 随机蕨分类器 目标检测 online leaming visuai perception fern classifier object detection
  • 相关文献

参考文献17

  • 1Viola P,Jones M. Fast and robust classification using asym- metric AdaBoost and a detector cascade [ A ]. Advances in Neural Information Processing System 141C]. Cambridge, MA:MIT Press,2002. 1311 - 1318. 被引量:1
  • 2Polikar R. Learn + + :an incremental learning algorithm for supervised neural networks[J]. IEEE Transactions on Sys- tems, Man, and Cybernetics, Part C : Applications and Re- views, Nov,2001,31 ( 4 ) :497 - 508. 被引量:1
  • 3Oza N, Russell S. Online bagging and boosting [ A ]. Pro- ceedings of the 8th International Conference on Artificial Intelligence and Statistics [ C ]. Florida, USA : Morgan Kauf- mann Publishers,2001. 105 - 112. 被引量:1
  • 4Grabner H, Bischof H. On-line boosting and vision [ A ]. Proceedings of the 19th IEEE Conference on Computer Vi- sion and Pattern Recognition [ C ]. New York City, USA: IEEE Press,2006. 260 - 267. 被引量:1
  • 5Zeisl B, Leistner C, Saffari A, Bischof H. On-line semi- supervised multiple-instance boostin [ A ]. Proceedings of the 23th IEEE Conference on Computer Vision and Pattern Recognition[ C ]. San Francisco, USA : IEEE Press, 2010. 1879 - 1887. 被引量:1
  • 6Chen S T, Lin H T, Lu C J. Boosting with online binary learners for the multiclass bandit problem [ A ]. Proceedings of The 31 st International Conference on Machine Learning [ C]. Beijing ,China: IEEE Press ,2014. 342 - 350. 被引量:1
  • 7QI Z Q, XU Y T, WANG L S. Online multiple instance boosting for object detection [ J ]. Neurocomputing, 2011,74 (10) :1769 - 1775. 被引量:1
  • 8Mustafa O, Michael C, Vincent L, Pascal F. Fast keypoint recognition using random ferns [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32 ( 3 ) : 448 - 461. 被引量:1
  • 9Roth P, Grabner H, Skocaj D, Bischof, H, Leonardis A. On- line conservative learning for persondetection[ A]. Proceed- ings of 2rid Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance [ C ]. Beijing, China: IEEE Press, 2005. 223 -230. 被引量:1
  • 10Skocaj D, Leonardis A. Weighted and robust incremental method for subspace learning[ A]. Proceedings of the 16th IEEE International Conference on Computer Vision [ C ]. Nice, France : IEEE Press, 2003.1494 - 1501. 被引量:1

二级参考文献17

  • 1Viola P, Jones M, Snow D. Detecting pedestrians usingpatterns of motion and appearance [ C]. In Proc. ICCV,IEEE, 2003,2(3):734-741. 被引量:1
  • 2Liyuan Li, Weimin Huang, Irene Yu-Hua Gu, Qi Tian .Statistical Modeling of Complex Backgrounds for Fore-ground Object Detection [ J]. IEEE Transactions on Im-age Processing,2004,13(11) : 1459-1472. 被引量:1
  • 3Li L,Huang W, Irene Y. H, Gu Q. T,Foreground objectdetection from videos containing complex background[C] . MULTIMEDIA'03: Proceedings of the eleventh ACMinternational conference on Multimedia, 2003:2-10. 被引量:1
  • 4Viola P,Jones M. Fast and robust classification using asym-metric AdaBcx>st and a detector cascade [C]. Advances inNeural Information Processing System 14. Cambridge, MA :MIT Press,2002,2(3) :1311-1318. 被引量:1
  • 5Duda R. 0, Hart P. E, Stork D. G. Pattern Classification(Second Edition)[M] ,Beijing:China Machine Press,2005. 被引量:1
  • 6Grabner H,Bischof H. On-line boosting and vision [ C].In Proc. CVPR, 2006, 1 : 260-267. 被引量:1
  • 7Polikar R. Leam + + : an incremental learning algorithmfor supervised neural networks [ J], IEEE Transactionson Systems,Man, and Cybernetics,Part C : Applicationsand Reviews, Nov, 2001,31(4) :497-508. 被引量:1
  • 8Oza N, Russell S. Online bagging and boosting [ J ]. In Artificial Intelligence and Statistics,2001,3:2340-2345. 被引量:1
  • 9Roth P,Grabner H, Skocaj D, Bischof, H, LeonardisA. On-line conservative Learning for Person detection[C]. In; Workshop on vs-PETS,2005:223-230. 被引量:1
  • 10Skovcaj D, Leonardis A. Weighted and robust incremen-tal method for subspace learning [ C]. In Proc. ICCV,2003, 2; 1494-1501. 被引量:1

共引文献2

同被引文献23

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部