期刊文献+

基于TLD的舰船目标跟踪方法研究 被引量:6

Ship Target Tracking Based on Tracking-Learning-Detecting Tactics
下载PDF
导出
摘要 复杂背景下进行舰船目标的跟踪时,在某些帧可能会有目标丢失。为了克服这个问题,采用联合检测-学习-跟踪的TLD算法。其过程是通过训练一种在线可更新的随机蕨分类器对目标跟踪结果进行检测,并使用一种基于时空约束的PN学习策略对分类器进行学习和更新,最后融合跟踪得到的结果对目标进行判别和确定。试验结果表明,该跟踪算法可适用于目标外形改变和遮挡的情况,鲁棒性强,识别率高,误检率低,同时实时性也较好,可以满足一般的在线跟踪系统的要求。 When warship targets are tracked in complex background, the targets loss may occur in some frames. In order to overcome the problem, a tracking-learning-detecting (TLD) algorithm is introduced. With the random ferns classifier which is trained online, the detection is performed based on the classification results. PN learning constrained by spatial and temporal features is used to update the classifier. The detection results and tracking results are fused to locate the target in each frame. Finally, experimental result shows that the TLD tracking algorithm has a high recognition rate and a low false detection rate. Benefitting from continuous learning with various target changes in each frame, the TLD algorithm is robust to target appearance changes and occlusion, and has a good real-time performance. The proposed algorithm can meet the requirements of general online tracking system.
出处 《红外技术》 CSCD 北大核心 2013年第12期780-787,共8页 Infrared Technology
基金 国家自然科学基金资助项目 编号:61273241 航空科学基金 编号:20105179002
关键词 舰船跟踪 随机蕨分类器 TLD算法 在线学习 ship tracking, random ferns classifier, TLD algorithm, online leaming
  • 相关文献

参考文献12

  • 1Huan W,Ming-wu R,Jingyu Y. Object Tracking Based on Genetic Algorithm and Kalman Filter[A].2008.80-85. 被引量:1
  • 2Qin kun X,Xiangjun L,Mina L. Object tracking based on local feature matching[A].2012.399-402. 被引量:1
  • 3Nak Y K,Tae G K. Comparison of Kalman filter and particle filter used for localization of an underwater vehicle[A].2012.350-352. 被引量:1
  • 4Baohong Y,Dexiang Z,Kui F. Video tracking of human with occlusion based on MeanShift and Kalman filter[A].2012.3672-3677. 被引量:1
  • 5Jianfang D,Jianxun L,Zhi Z. Face tracking with an Adaptive Adaboost-based Particle Filter[A].2012.3626-3631. 被引量:1
  • 6Kalal Z,Matas J,Mikolajczyk K. Online learning of robust object detectors during unstable tracking[A].2009.1417-1424. 被引量:1
  • 7Kalal Z,Mikolajczyk K,Matas J. Face-TLD:Tracking-Learning-Detection applied to faces[A].2010.3789-3792. 被引量:1
  • 8Ozuysal M,Calonder M,Lepetit V. Fast keypoint recognition using random ferns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,(3):448-461. 被引量:1
  • 9Villamizar M,Garrell A,Sanfeliu A. Online human-assisted learning using Random Ferns[A].2012.2821-2824. 被引量:1
  • 10Bosch A,Zisserman A,Muoz X. Image classification using random forests and ferns[A].2007.1-8. 被引量:1

同被引文献333

  • 1Kalal Z,Matas J.Online learning of robust object detectors during unstable tracking[C]//Proceedings of 12th International Conference on Computer vision workshops.New York:IEEE X-plore,2009:1417-1424. 被引量:1
  • 2Kalal Z,Matas J.P-N learning:Bootstrapping binary classify-rs by structural constraints[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2010:49-56. 被引量:1
  • 3Kalal Z,Mikolajczyk K.Forward-Backward Error:Automatic Detection of Tracking Failures[C]//Proceedings of 20th International Conference on Pattern Recognition.New York:IEEE Press,2010:2756-2759. 被引量:1
  • 4Kalal Z,Mikolajczyk K.Tracking-Learning-Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422. 被引量:1
  • 5Hu J,Hu S,Sun Z.A real time dual-camera surveillance system based on tracking-learning-detection algorithm[J].IEEE,2013:886-891. 被引量:1
  • 6Nebehay G.Robust Object Tracking Based on Tracking-LearningDetection[D].Vienna:Vienna University of Technology,2013. 被引量:1
  • 7Otsu.A Tlreshold Selection Method from Gray-Level Histograms[J].IEEE Trans on SMC-9.1979:62-66. 被引量:1
  • 8Baker S,M I.Lucas-Kanade 20 Years On:A Unifying Framework[J].International Journal of Computer Vision,2004,56(3):221-255. 被引量:1
  • 9Zhang Ping S Y.A Parallel Implementation of TLD Algorithm Using CUDA:The IET 5th International Conference on Wireless,Mobile&Multimedia Networks[Z].Beijing:2013. 被引量:1
  • 10Chokkalingam B.Evaluation of TLD Predator algorithm[D].NADA,2013. 被引量:1

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部