期刊文献+

基于Bladed风电机组变速与变桨距控制器参数优化 被引量:5

Parameters Optimization for Variable Speed and Pitch Controller of Wind Turbine Based on Bladed
下载PDF
导出
摘要 由于风力发电系统具有非线性和参数时变等特点,其控制器参数在设计和优化时不易计算与整定。利用Bladed软件中模型线性化结合模型降阶算法建立了适用于参数整定的机组线性化模型,应用免疫记忆粒子群算法整定控制器PI(Proportion Integral)参数,并基于Bladed参数辨识结果计算了最优转速-转矩控制的增益系数和自适应PI变桨距控制的增益因子,形成了一种基于Bladed的风电机组变速与变桨距控制器参数优化方法。仿真结果表明了该优化方法的正确性和有效性。 Due to nonlinearity and time-varying parameters of wind power system, its controller parameters are hard to be calculated and tuned during the process of design and optimization. The linear model which is suitable for parameters tuning was built through model linearization of Bladed and model reducing-order algorithm. The PI parameter was tuned with the IM-PSO (Immune Memory Particle Swarm Optimization). Moreover, the gain coefficient of optimal torque control and the gain divisor of adaptive PI pitch control conducted optimizing calculation based on the identification parameters of Bladed. A set of optimization method .for variable speed and pitch controller of wind turbine was established. The simulation results show the validity and advantages of the proposed methods.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第7期1644-1650,1660,共8页 Journal of System Simulation
基金 中央高校基本科研业务费(2015MS24)
关键词 风电机组 Bladed 控制器 优化 免疫记忆粒子群算法 wind turbine Bladed controller optimization immune memory particle swarm optimization
  • 相关文献

参考文献16

  • 1G L Garrad Hassan. Bladed User Manual (Version 4.2) [M]. England: Garrad Hassan & Partners Ltd., 2011. 被引量:1
  • 2Y Bekakra, D B Attous. Optimal tuning of PI controller using PSO optimization for indirect power control for DFIG based wind turbine with MPPT [J]. International Journal of System Assurance Engineering and Management (S0975-6809), 2014, 5(3): 219-229. 被引量:1
  • 3A All, A Moussa, K Abdelatif, et al. Comparative performance of wind turbine driven PMSG with PI-controllers tuned using heuristic optimization algorithms [C]//IEEE International Energy Conference. Croatia: Institute of Electrical and Electronics Engineers, 2014: 120-126. 被引量:1
  • 4吴峰,汪海洋,金宇清,鞠平.基于正交优选粒子群算法的双馈风电系统控制器参数优化整定[J].电力系统自动化,2014,38(15):19-24. 被引量:10
  • 5Jordi Zaragoza, Josep Pou, Antoni Arias, et al. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system [J]. Renewable Energy ($0960-1481), 2010, 36(10): 1421-1430. 被引量:1
  • 6Bourdoulis K M, Alexandridis T A. Rotor-side cascaded PI controller design and gain tuning for DFIG wind turbines [C]// 4th International Conference on Power Engineering, Energy and Electrical Drives. Turkey: Institute of Electrical and Electronics Engineers. USA: IEEE, 2013: 733-738. 被引量:1
  • 7Wei Qiao, Ganesh K Venayagamoorthy, Ronald G Harley. Design of Optimal PI Controllers for Doubly Fed Induction Generators Driven by Wind Turbines Using Particle Swarm Optimization [C]// 2006 International Joint Conference on Neural Networks. Vancouver BC Canada: Institute of Electrical and Electronics Engineers (IEEE), 2006:1982-1987. 被引量:1
  • 8林今,李国杰,孙元章,黎雄.双馈风电机组的小信号分析及其控制系统的参数优化[J].电力系统自动化,2009,33(5):86-90. 被引量:24
  • 9G L Garrad Hassan. Bladed Theory Manual (Version 4.2) [M]. England: Garrad Hassan & Partners Ltd., 2011. 被引量:1
  • 10郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制[J].中国电机工程学报,2010,30(8):123-128. 被引量:116

二级参考文献65

共引文献173

同被引文献40

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部