摘要
Microstructure stability of in situ synthesized Ti2AlN/Ti-48Al-2Cr-2Nb composite during aging at 900 ℃ was investigated by XRD, OM and TEM, and the unreinforced Ti-48Al-2Cr-2Nb alloy was also examined for comparison. The result showed that in the TiAl alloy,α2 lamellae thinned and were broken down, and became discontinuous with increasing aging time. The decomposition ofα2 lamella toγ which was characterized by parallel decomposition and breakdown ofα2 lamellae led to the degradation of the lamellar structure. While in the composite, lamellar structure remained relatively stable even after aging at 900 ℃ for 100 h. No breakdown ofα2 lamellae except parallel decomposition and precipitation of fine nitride particles was observed. The better microstructural stability of the composite was mainly attributed to the precipitation of Ti2AlN particles at theα2/γ interface which played an important role in retarding the coarsening of lamellar microstructure in the matrix of composite.
采用XRD、OM和TEM等方法对原位合成Ti_2AlN/Ti-48Al-2Cr-2Nb复合材料在900°C时效过程中的组织稳定性进行研究,并与未增强的Ti-48Al-2Cr-2Nb合金进行对比分析。研究结果发现,在TiAl合金中,α_2片层变细并发生破碎,且随着时效时间的延长变得不连续。以α_2板条平行分解和破碎为特征的α_2片层向g的分解导致片层结构退化。而在复合材料中,在900°C时效100 h,片层结构保持相对稳定。除了片层平行分解和细小的氮化物沉淀外,没有发现α_2片层破碎。复合材料较好的组织稳定性主要与α_2/γ界面上的Ti_2AlN颗粒沉淀有关。Ti_2AlN相的析出对延缓复合材料基体片层组织粗化具有重要作用。
基金
Project(2011CB605502)supported by the National Basic Research Program of China
Project(B08040)supported by Introducing Talents of Discipline to Universities,China