期刊文献+

连通的K_n-残差图 被引量:1

On connected K_n-residual graph
下载PDF
导出
摘要 m-K_n-残差图是由P.Erds,F.Harary和M.Klawe等人提出的,当m=1时,他们证明了当n≠1,2,3,4时,K_(n+1)×K_2是唯一的具有最小阶的连通的K_n-残差图.首先得到了m-K_n-残差图的重要性质,同时证明了当n=1,2,3,4时,连通K_n-残差图的最小阶和极图,其中当n=1,2时得到唯一极图;当n=3,4时,证明了恰有两个不同构的极图,从而彻底解决连通的K_n-残差图的最小阶和极图问题.最后证明了当n≠1,2,3,4时,K_(n+1)×K_2是唯一的具有最小阶的连通的K_n-残差图. The definition of m-Kn-residual graph was raised by P.Erdos,F.Harary and M.Klawe.When n ≠ 1,2,3,4,they proved that K(n+1)×K2 is only connected to Kn-residual graph which has minimum order.In this paper,we have studied m-Knresidual graph,and obtained some important properties.At the same time,we proved that the connected Kn-residual graph of the minimum order and the extremal graph for n = 1,2,3,4.When n = 1,2,it is the only extremal graph.When n = 3,4,we proved just two connected residual graph non isomorphic with the minimum order,so as to thoroughly solve the connected Kn-residual graph of the minimum order and extremal graph's problems.Finally we prove that K(n+1)×K2 is only connected with the minimum order of Kn-residual graph,when n ≠ 1,2,3,4.
出处 《运筹学学报》 CSCD 北大核心 2016年第2期38-48,共11页 Operations Research Transactions
基金 国家自然科学基金(No.61472056) 重庆市自然科学基金(Nos.cstc2015jcyjA00034 cstc2015jcyjA00015) 重庆市教委科研项目(Nos.KJl5012024 KJ1500403 KJ1400426)
关键词 残差图 最小阶 极图 residual graph minimum order extremal graph
  • 相关文献

参考文献10

  • 1Harary F, Klawe M. Residually-complete graphs [J]. Annals of Discrete Mathematics, 1980, 6: 117-123. 被引量:1
  • 2杨世辉,段辉明.奇阶完备残差图[J].应用数学学报,2011,34(5):778-785. 被引量:4
  • 3Liao J D, Yang S H, Deng Y. On connected 2-Kn-residual graphs [J]. Mediterranean Journal of Mathematics, 2012, 10: 1660-1677. 被引量:1
  • 4Liao J D, Yang S H. Two improvement on the Erdos, Harary and Klawe conjecture [J]. Mediter- ranean Journal of Mathematics, 2014, 6: 2160-2176. 被引量:1
  • 5段辉明,曾波,窦智.连通的三重K_n-残差图[J].运筹学学报,2014,18(2):59-68. 被引量:4
  • 6Duan H M, Zeng B, Jin L Y. On connected m-K2-residual graphs [J]. Ars Combinatoria, 2016, 125(1): 23-32. 被引量:1
  • 7Holuga M. Image segmentation using iterated graph cuts with residual graph [J]. Eduard Sojka in Advances in Visual Computing, 2013, 1: 228-237. 被引量:1
  • 8Trotta B. Residual properties of simple graphs [J]. Bulletin of the Australian Mathematical Society, 2010, 82(3): 488-504. 被引量:1
  • 9段辉明,曾波,李永红.关于m-HPK(n_1,n_2,n_3,n_4)-残差图[J].数学杂志,2014,34(2):324-334. 被引量:2
  • 10Duan H M. On connected m multiply 2 dimensions composite hyperplane complete graphs [J]. Journal of Discrete Mathematical Sciences and Cryptography, 2013, 16(6): 313-328. 被引量:1

二级参考文献28

  • 1杨世辉,段辉明.具有次最小阶的连通的残差完备图[J].西南师范大学学报(自然科学版),2006,31(6):7-10. 被引量:3
  • 2Paul ErdSs, Frank Harary, Maria Klawe. Residually-complete Graphs. Appals of Discrete Mathematics, 1980, 6:117-123. 被引量:1
  • 3ErdSs P, Harary F, Klawe M. Residually-complete graphs[J]. Annals of Discrete Mathematics, 1980, (6): 117-123. 被引量:1
  • 4Liao Jiangdong, Yang Shihui, Deng Yong. On connected 2 - Kn-residual graphs[J]. Mediterranean Journal of Mathematics, 2012, (10): 1660-1677. 被引量:1
  • 5Liao Jiangdong, Long Gonglun, Li Mingyong. ErdSs conjecture on connected residual graphs[J]. Journal of Computer, 2012, 7(6): 1497-1502. 被引量:1
  • 6Liao Jiangdong, Luo Ming. 3 - Kn-residual graphs[J]. Lecture Notes in Electrical Engineering Lnee, 2012, (154): 72 -77. 被引量:1
  • 7杨世辉.F3-Kn×Ks-残差图[J].曲阜师院学报(自然科学版),1985,(2):3438. 被引量:1
  • 8Luksic P, Fisanski T. Distance-residual graphs[J]. Mathematics, 2006, 9(3): 104-111. 被引量:1
  • 9Trotta B. Residual properties of simple graphs[J]. Bulletin of the Australian Mathematical Society, 2010, 82(3): 488 -504. 被引量:1
  • 10Chernyak A A. Residual reliability of P-threshold graphs[J]. Discrete Applied Mathematics, 2004, 135(1): 83-95. 被引量:1

共引文献5

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部