期刊文献+

奇阶完备残差图 被引量:4

Residually Complete Graph with Odd Order
原文传递
导出
摘要 本文讨论奇阶完备残差图,证明了对于任意奇数n,不存在奇阶K_n-残差图.对任意奇数t≥3和n=2t,2t-2,2t-4构造了一类具有奇阶2n+t的K_n-残差图.我们证明了当n≡0(mod4)时,K_n-残差图的最小奇阶为5n/2+1;当n≡2(mod4)时,K_n-残差图的最小奇阶为5n/2,并且证明了相应的最小奇阶K_n-残差图的唯一性. In this paper, we discuss residually complete graphs with odd order, it is easy to prove that for any odd number n, there is no Kn-residual graphs with odd order. For odd integer t ≥3 and n = 2t, 2t - 2, 2t - 4, we construct a class of Kn-residual graphs with odd order 2n + t. For every even number n, we proved that there exist Kn-residual graphs with odd orders are 5n/2 and 5n/2 + 1 whenever n ≡2 (rnod 4) and n ≡ 0 (mod 4)respectively. For n ≡ 2 (mod 4), we proved that Kn-residual graph with least odd order is unique.
出处 《应用数学学报》 CSCD 北大核心 2011年第5期778-785,共8页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金资助项目(1097118)
关键词 完备残差图 闭邻域 residually complete graph neighborhood
  • 相关文献

参考文献3

二级参考文献7

  • 1哈拉里F.图论[M].上海:上海科学技术出版社,1980.. 被引量:5
  • 2杨世辉.二重-Kn-残留图[J].曲阜师范学院学报,1984,(2):71-82. 被引量:1
  • 3杨世辉.m-Kn×Kz-残留图[J].曲阜师范学院学报,1985,(2):34-38. 被引量:1
  • 4[1]Paul Erd(o)s,Frank Harary,Maria Klawe.Residually-Complete Graphs[J].Annals Discrete of Mathematics,1980,6:117-123. 被引量:1
  • 5[3]Harary F.Graph Theory[M].Addision-Wesley Reading,1969. 被引量:1
  • 6Paul Erdos, Feank Harary, Maria Klawe Residelly-Complete Graphs [J]. Annals of Diacrete Mathematics, 1980, 6: 117-123. 被引量:1
  • 7杨世辉,刘学文.F[K_t]残差图[J].西南师范大学学报(自然科学版),2003,28(3):373-376. 被引量:4

共引文献3

同被引文献35

  • 1杨世辉,段辉明.具有次最小阶的连通的残差完备图[J].西南师范大学学报(自然科学版),2006,31(6):7-10. 被引量:3
  • 2ErdSs P, Harary F, Klawe M. Residually-complete graphs[J]. Annals of Discrete Mathematics, 1980, (6): 117-123. 被引量:1
  • 3Liao Jiangdong, Yang Shihui, Deng Yong. On connected 2 - Kn-residual graphs[J]. Mediterranean Journal of Mathematics, 2012, (10): 1660-1677. 被引量:1
  • 4Liao Jiangdong, Long Gonglun, Li Mingyong. ErdSs conjecture on connected residual graphs[J]. Journal of Computer, 2012, 7(6): 1497-1502. 被引量:1
  • 5Liao Jiangdong, Luo Ming. 3 - Kn-residual graphs[J]. Lecture Notes in Electrical Engineering Lnee, 2012, (154): 72 -77. 被引量:1
  • 6杨世辉.F3-Kn×Ks-残差图[J].曲阜师院学报(自然科学版),1985,(2):3438. 被引量:1
  • 7Luksic P, Fisanski T. Distance-residual graphs[J]. Mathematics, 2006, 9(3): 104-111. 被引量:1
  • 8Trotta B. Residual properties of simple graphs[J]. Bulletin of the Australian Mathematical Society, 2010, 82(3): 488 -504. 被引量:1
  • 9Chernyak A A. Residual reliability of P-threshold graphs[J]. Discrete Applied Mathematics, 2004, 135(1): 83-95. 被引量:1
  • 10Bondy J A, Murty U S R. Graph theory[M]. Graduate Texts in Mathematics 244, New York: Spring, 2008. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部