期刊文献+

基于最大能量释放率原理的裂纹扩展算法的改进 被引量:3

Improvements of the Crack Extension Algorithm Based on the Maximum Energy Release Rate Criterion
下载PDF
导出
摘要 在基于最大能量释放率判据(Maximum energy release rate,MERR)的复合型裂纹扩展分析中,因需要对多个虚拟裂纹扩展方向进行试算和迭代运算,这会大大增加计算量,特别是为保证计算精度不得不选取很小的试算转角增量时,该问题会很突出。为此,提出分别基于有限差分法(Finite difference method,FDM)和最大周向应力判据(Maximum tangential stress,MTS)的裂纹转角预测方法,以减小计算量或提高计算精度。推导相关计算公式和算法,利用FORTRAN与ANSYS参数化设计语言(ANSYS parameter design language,APDL)语言混合编程的方法实现了基于ANSYS有限元环境下的裂纹扩展自动分析,并通过对带孔薄板的疲劳裂纹扩展分析,验证了所提出方法的有效性。分析发现,FDM的预测误差小于MTS的预测误差。MTS预测的转角误差曲线与转角曲线的一阶导数有相同的变化规律,而FDM预测转角的误差曲线与转角曲线的二阶导数有相同的变化规律。根据MERR和MTS判据得到的K_(Ⅱ)值趋近于零,这与局部对称判据(Local symmetry,LS)一致,但MERR和LS判据的计算结果更接近。 For a mixed-mode crack propagation analysis according to the maximum energy release rate(MERR) criterion, test and iterative calculation in multiple virtual crack extension directions significantly increases computation time, especially, when using smaller trying angle increments to insure accuracy of the analysis. To overcome the inconvenience, algorithms based on the finite difference method(FDM) and the maximum tangential stress(MTS) criterion are proposed for crack kinking angle prediction, so as to reduce computation time or to improve accuracy. Relevant formulation and algorithms are derived and verified for effectiveness via fatigue crack propagation analysis of a thin plate with holes. Automatic crack extension analysis by mixed language programming with FORTRAN and ANSYS parameter design language(APDL) in the ANSYS software is realized. Comparative analysis revealed that kinking angle prediction errors from FDM are smaller than those by MTS. The kinking angle errors resulted from MTS follow the same rule with the second derivatives of the kinking angle curve, while those from FDM follow the same fluctuation with the first derivatives of the kinking angle curve. It is found that KII tends to be zero both for the MERR criterion and for the MTS criterion, which is consistent with the the local symmetry criterion(LS), while the MERR criterion seems more akin to the LS criterion in view of the KII value predicted.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2016年第10期91-96,共6页 Journal of Mechanical Engineering
关键词 裂纹扩展方向 最大能量释放率 有限差分法 最大周向应力 crack kinking direction maximum energy release rate finite difference method maximum tangential stress
  • 相关文献

参考文献16

  • 1ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. J. Basic Engineering, 1963, 85(2): 519-527. 被引量:1
  • 2SIH G C. Strain energy density factor applied to mixed-mode crack problems[J]. International Journal of Fracture, 1974, 10(1): 305-321. 被引量:1
  • 3NEMAT N S, HORII H. Compression-induced nonplanar crack with application to splitting, exfoliation and rockburst[J]. Journal of Geophysical Research, 1982, 87(8): 6805-6821. 被引量:1
  • 4HUSSAIN M A, PU S L, UNDERWOOD J H. Strain energy release rate for a crack under combined mode I and mode II[J]. Fracture Analysis, 1974(9): 2-28. 被引量:1
  • 5GOLDSTE1N R V, SALGANIK R L. Brittle fracture of solids with arbitrary cracks[J]. International Journal of Fracture, 1974, 10(10): 507-523. 被引量:1
  • 6SUTTON M A, DENG X, MA F, et al. Development and application of a crack tip opening displacement-based mixed mode fracture criterion[J]. Int. J. Struct. Solids, 2000, 37(2): 3591-3618. 被引量:1
  • 7LENT K. On the method of virtual crack extension[J]. Int. J. Nurner. Meth. Eng., 1975(9): 187-207. 被引量:1
  • 8BROEK D. Elementary engineering fracture mechanics[M]. Dordrecht: Martinus Nijho Publishers, 1986. 被引量:1
  • 9KANNINEN M, POPELAR C. Advanced fracture mechanics[M]. Oxford: Oxford University Press, 1985. 被引量:1
  • 10ANSYS Inc. ANSYS Release 11.0 Documentation[EB/OL]. [2006-12-01]. http://www.ansys com/. 被引量:1

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部