期刊文献+

基于XFEM的高强桥索钢丝冷拔裂纹扩展数值模拟 被引量:3

Numerical simulation of crack propagation in cold-drawn high-strength bridge cable steel wire based on XFEM
下载PDF
导出
摘要 基于有限元软件Abaqus,采用扩展有限元法(XFEM)分析高强桥索钢丝冷拔过程的裂纹扩展,研究裂纹位置、裂纹角度、裂纹长度对裂纹扩展路径和裂缝宽度的影响。结果表明:冷拔过程裂纹基本符合I型扩展规律,裂纹位置、裂纹角度、裂纹长度对裂纹扩展路径无显著影响;裂纹位置越靠近中心、裂纹角度数值越小、裂纹长度越长时,裂缝宽度越大;裂纹位置越接近表面、裂纹角度数值越大、裂纹越长时,裂纹闭合越晚。此外,通过预应力冷拔机进行钢丝表面不同角度预制裂纹扩展试验,分析裂纹扩展规律并通过α-γ、α-δ曲线验证了数值模型的可靠性。 Based on the finite element software Abaqus,the extended finite element method(XFEM)was used to analyze the crack propagation during the cold drawing process of high-strength bridge cables. The effects of crack position,crack angle,and crack length on crack propagation path and crack width were studied and discussed. Numerical simulation results show that the crack in the cold drawing process basically conforms to the I-type growth law,and the crack position,crack angle,crack length have no significant influence on the crack propagation path. The closer the crack position is to the center,the smaller the crack angle value is,and the longer the crack length is. the larger the crack width is. The closer the crack position is to the surface,the larger the crack angle value is,and the longer the crack is,the later the crack closure phenomenon appears. In addition,a prestressed cold drawing machine was used to conduct prefabricated crack propagation tests at different angles on the surface of the steel wire. The crack propagation law was analyzed and the reliability of the numerical model was verified by α-γ and α-δ curves.
作者 殷晓磊 赵刚 鲍思前 程剑 龚黎 YIN Xiaolei;ZHAO Gang;BAO Siqian;CHENG Jian;GONG Li(School of Materials and Metallurgy,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《兵器材料科学与工程》 CAS CSCD 北大核心 2021年第5期58-64,共7页 Ordnance Material Science and Engineering
基金 国家重点研发计划专项(2017YFB0304800)。
关键词 XFEM 高强桥索钢丝 裂纹扩展 裂纹扩展路径 裂缝宽度 裂纹闭合 XFEM high-strength bridge cable steel wire crack propagation crack propagation path crack width crack closure
  • 相关文献

参考文献9

二级参考文献34

  • 1贾学明,王启智.三维断裂分析软件FRANC3D[J].计算力学学报,2004,21(6):764-768. 被引量:27
  • 2仇仲翼.应力强度因子手册[M].北京:科学出版社,1993. 被引量:9
  • 3庄茁,柳占立,成斌斌,等.扩展有限单元法[M].北京:清华大学出版社,2012. 被引量:10
  • 4Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999,45 (9) : 601-620. 被引量:1
  • 5Returners J J C, Borst R D, Needleman A. The simulation of dynamic crack propagation using the cohesive seg ments method[J]. Journal of the Mechanics and Physics of Solid, 2008,56(1)..70-92. 被引量:1
  • 6Song J H, Areias P M A, Belytschko T. A Method for dynamic crack and shear band propagation with phantom nodes[J]. International Journal for Numerical Methods in Engineering, 2006,67(6)..868-893. 被引量:1
  • 7程靳,赵树山.断裂动力学[M].北京:科学出版社,2006:135-137. 被引量:1
  • 8Mohammadi S. Extended finite element method for fracture analysis of structures[M]. Tehran, Dan= Blackwell Pulishing Ltd, 2008: 187-188. 被引量:1
  • 9Hou J, Goldstraw M, Maan S, et al. An evaluation of 3D crack growth using ZENCRACK [ R ]. Defence Science and Technology Organisation Victoria (Australia) Aero- nautical and Maritime Research Lab, 2011. 被引量:1
  • 10Richard H A, Fulland M, Sch? llmann M, et al. Simu- lation of fatigue crack growth using ADAPCRACK3D [C]. Fatigue. 2002:1405 - 1412. 被引量:1

共引文献24

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部