期刊文献+

带波动算子的非线性Schrdinger方程的线性紧格式(英文) 被引量:1

A linear compact scheme for the nonlinear Schrdinger equation with wave operator
下载PDF
导出
摘要 本文对带波动算子的非线性Schrdinger方程提出了一个线性的紧致差分格式,从而解决了该方程的周期初值问题.通过先验估计和能量法,证明了格式的无条件稳定性和无穷模误差,且证得格式的收敛阶为O(h^4+τ~2),最后通过一组数值实验验证了理论结果. In this paper,a linear compact finite difference scheme is proposed for the nonlinear Schrodinger equation with wave operator(NLSEWO).Thus,the periodic initial value problem of the NLSEWO is solved.The unconditional stability and convergence in maximum norm with order O(h^4 + τ^2) are proved by the prior estimations and the energy method.Those theoretical results are demonstrated by a numerical experiment.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期1-8,共8页 Journal of East China Normal University(Natural Science)
基金 安徽省高校自然科学研究重点项目(KJ2015A242)
关键词 非线性SCHRODINGER方程 波动算子 线性紧格式 稳定性 收敛性 nonlinear Schrodinger equation wave operator linear compact scheme stability convergence
  • 相关文献

参考文献14

  • 1GUO B L, LIANG H X. On the problem of numerical calculation for a class of the system of nonlinear Schrbdinger equations with wave operator [J]. Journal on Numerical Methods and Computer Applications, 1983(4): 258-263. 被引量:1
  • 2ZHANG F, PER]Z-GGARCIA V M, V-ZQUEZ L. Numerical simulation of nonlinear SchrSdinger equation system: A new conservative scheme [J]. Applied Mathematics and Computation, 1995, 71: 165-177. 被引量:1
  • 3CHANG Q S, JIA E, SUN W. Difference schemes for solving the generalized nonlinear Schrbdinger equation [J]. Journal of Computational Physics, 1999, 148(2): 397-415. 被引量:1
  • 4ZHANG L M, CHANG Q S. A new difference method for regularized tong-wave equation [J]. Journal on Numerical Methods and Computer Applications, 2000(4): 247-254. 被引量:1
  • 5ZHANG F, VZQUEZ L. Two energy conserving numerical schemes for the Sine-Gordon equation [J]. Applied Mathematics and Computation, 1991, 45(1): 17-30. 被引量:1
  • 6WONG Y S, CHANG Q S, GONG L. An initial-boundary value problem of a nonlinear Klein-Gordon equation [J]. Applied Mathematics and Computation, 1997, 84(1): 77-93. 被引量:1
  • 7CHANG Q S, JIANG H. A conservative difference scheme for the Zakharov equation [J]. Journal of Computa- tional Physics, 1994, 113(2): 309-319. 被引量:1
  • 8张鲁明,李祥贵.一类带波动算子的非线性Schringer方程的一个守恒差分格式[J].数学物理学报(A辑),2002,22(2):258-263. 被引量:6
  • 9ZHANG L M, CHANG Q S. A conservative numerical scheme for a class of nonlinear Schrbdinger equation with wave operator [J]. Applied Mathematics and Computation, 2003, 145(s2-3): 603-612. 被引量:1
  • 10WANG T C, ZHANG L M. Analysis of some new conservative schemes for nonlinear Schrbdinger equation with wave operator [J]. Applied Mathematics and Computation, 2006, 182: 1780-1794. 被引量:1

二级参考文献5

共引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部