期刊文献+

微博事件感知与脉络呈现系统 被引量:4

Event sensing and vein presentation leveraging microblogging
下载PDF
导出
摘要 为了研究微博的事件感知与脉络呈现方法,以Twitter为研究对象,对现实生活中发生的事件进行提取并呈现事件发展的过程.对微博的处理分为事件感知阶段和事件脉络呈现阶段.在事件感知阶段对原始微博进行过滤分析,去除冗余信息,并得到与事件相关的微博集.在事件脉络呈现阶段采用基于图结构的方法,将微博之间的关系转换成图中结点之间的关系,寻找图中的关键结点作为关键微博,并连接关键结点,最终得到在时间和内容上连贯的事件脉络.实验结果表明:所提出的方法能呈现事件的发展过程,也能体现事件发展的多样化. The event sensing and vein presenting problem with the data from Twitter was investigated to extract real-life events and the development of the event and finally present a comprehensive event vein.Microblogging process was made up of two main modules,including event sensing and event presentation.The event sensing module processed raw microblogs,filtered redundant information and extracted the ones associated with the event.The event presentation module presented the event vein based on the relationship between microblogs.Next,an effective approach based on the graph structure was proposed to transform the relationship between microblogs to the relationship between nodes,each of which in the graph represented a microblog.Key nodes was identified in the graph,and then linked with edges.Finally,the event vein that ensured both temporal and content coherence was generated.Results of experiments over a real dataset collected from Twitter show that our approach to generate the event vein is effective and also can reflect the diversity of events.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1176-1182,共7页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2015CB352400) 国家自然科学基金资助项目(61332005 61373119 61222209)
关键词 微博 事件感知 事件脉络 图挖掘 microblogging event detection storyline graph mining
  • 相关文献

参考文献25

  • 1DORK M, GRUEN D, WILLIAMSON C, et al. A vis- ual backchannel for large-scale events [J]. IEEE Trans- actions on Visualization and Computer Graphics, 2010, 6(16) : 1129 - 1138. 被引量:1
  • 2MARCUS A, BERNSTEIN M S, BADAR O, et al. Twitinfo: aggregating and visualizing microblogs for event exploration [C] // Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Vancouver: ACM, 2011 : 227 - 236. 被引量:1
  • 3ABEL F, HAUFF C, HOUBEN G J, et al. Semantics + filtering+ search: twitcident, exploring information in social web streams [C] // Proceedings of the 23rd ACM Conference on Hypertext and Social Media. Mil- waukee: ACM, 2012: 285-294. 被引量:1
  • 4MCKELVEY K, MENCZER F. Design and prototyping of a social media observatory [C] /// Proceedings of the 22nd International Conference on World Wide Web com- panion. Rio de Janerio: ACM, 2013: 1351- 1358. 被引量:1
  • 5TEEVAN J, RAMAGE D, MORRIS M R. Twit- terSearch: a comparison of microblog search and web search [C] // Proceedings of the 4th ACM International Conference on Web search and Data mining. Hong Kong : ACM, 2011:35-44. 被引量:1
  • 6庞磊,李寿山,周国栋.基于情绪知识的中文微博情感分类方法[J].计算机工程,2012,38(13):156-158. 被引量:32
  • 7张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 8BERMINGHAM A, SMEATON A F. Classifying sen- timent in microblogs: is brevity an advantage?[C] // Proceedings of the 19th ACM International Conference on Information and Knowledge Management. Toronto : ACM, 2010:1833 - 1836. 被引量:1
  • 9WANG R, HUANG W, CHEN W, et al. ASEM: min- ing aspects and sentiment of events from microblog [C] // Proceedings of the 24th ACM International on Confer- ence on Information and Knowledge Management. Mel- bourne: ACM, 2015: 1923- 1926. 被引量:1
  • 10WANG C, XIAO Z, IAU Y, et al. SentiView: senti- ment analysis and visualization for internet popular top- ics [J]. IEEE Transactions on Human-Machine Sys- tems, 2013, 43(6): 620-630. 被引量:1

二级参考文献68

  • 1Kwak H, Lee C, Park H, et al. What is Twitter, a Social Net- work or a News Media? I-A]//WWW' 10 Proceedings of the 19th International Conference on World Wide Web, 2010[C]. Raleigh, North Carolina, USA : ACM, 2010 : 591 -600. 被引量:1
  • 2Liu Zi-tao, Yu Wen-chao, Chen Wei, et al. Short Text Feature Selection for Miero-blog Mining [A]//Computational Intelli- gence and Software Engineering, 2010[C]. Wuhan, China: Wu- han University, 2010: 1-4. 被引量:1
  • 3Pak A,Paxoubek Pa Twitter as a Corpus for Sentiment Analy- sis and Opinion Mining[A]//Proceedings of LREC, 2010[C]. Valletta, Malta: European Language Resources Association (ELRA). 2010:1320-1326. 被引量:1
  • 4Allan J,Carbonell JG, et al. Topic Detection and Tracking Pilot Study Final Report[A]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, 1998 [C]. 1998:194-218. 被引量:1
  • 5Sakaki Ti, Okazaki M, Matsuo Y. Earthquake Shakes Twittt User..Real-time Event Detection by Social Sensors [ A] // Pr1 ceedings of the 19th International Conference on World Wi1 Web, 2010[C]. Raleigh, North Carolina: ACM Press, 2010: 85] 861. 被引量:1
  • 6Petrovi S, Osborne M, Lavrenko V. Streaming First Story De- tection with application to Twitter[A]//Proceedings of HLT- NAACL, 2010 [C]. Stroudsburg, PA, USA: Association for Computational Linguisties. 2010:181-189. 被引量:1
  • 7Zhang H P, Yu H K, Xiong D Y, et al. HHMM-based Chinese lexieal analyzer ICTCLAS [A]//. Proceedings of the second SIGHAN workshop on Chinese language processing-Volume 17, 2003 [C]. Sapporo, Japan: Association for Computational Linguistics, 2003 : 184-187. 被引量:1
  • 8路荣,项亮,刘明荣,等.基于隐主题分析和文本聚类的微博客新闻话题发现研究[A]∥第六届全国信息检索学术会议,2010[C].2010:291-298. 被引量:2
  • 9中国互联网信息中心.第30次中国互联网络发展状况统计报告[R].2012. 被引量:8
  • 10Pang Bo,Lee L,Vaithyanathan S.Thumbs up?SentimentClassification Using Machine Learning Techniques[C]//Proc.ofConference on Empirical Methods in Natural Language Processing.[S.l.]:ACM Press,2002. 被引量:1

共引文献190

同被引文献38

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部