期刊文献+

基于社交媒体的事件脉络挖掘研究进展 被引量:5

Research Progress of Event Summarization Based on Social Media
下载PDF
导出
摘要 随着Web 2.0的兴起以及移动互联网与智能终端的蓬勃发展,以微博为代表的社交媒体迅速发展壮大。基于社交媒体的事件脉络挖掘技术在突发事件检测、事件走势分析、舆情预测等诸多方面发挥着重要作用,受到学术界的广泛关注。该文在最新研究成果与文献的基础上,以事件脉络挖掘的实现为出发点,概括总结了核心步骤中存在的关键技术,并归纳提出了目前事件脉络挖掘与分析过程中存在的4个关键性的技术问题与挑战,分别如下:多模态信息融合条件下的事件脉络生成、跨媒介异构数据协同下的事件挖掘与事件脉络生成、层次化多粒度复杂事件的关系映射和实时数据条件下动态事件的快速识别与脉络生成。同时,针对上述关键问题与技术挑战进行了理论探讨、工作进展与趋势分析以及实际应用介绍,从而为深入研究和解决基于社交媒体的事件脉络挖掘技术提供了新的研究线索与方向。 The event summarization technology based on social media plays an important role in the study of emergency detection,event trend analysis,public opinion analysis and many other aspects.Based on a large number of latest research,this paper summarizes the key technologies in the core steps from the perspective of the realization of event summarization,and puts forward the following four key technical problems and challenges in the process of event context mining and analysis:how to generate event summarization under multimodal information fusion;how to mine event and generate event summarization under cross-media heterogeneous data collaboration;how to map relationship hierarchically and at multi-granularity of complex events and how to recognize event and generate event summarization under real-time conditions.Meanwhile,this paper discuss the related theories,research progresses and research trend,which can provide new research clues and directions for event summarization mining technology based on social media.
作者 张晨昕 饶元 樊笑冰 王硕 ZHANG Chenxin;RAO Yuan;FAN Xiaobing;WANG Shuo(Shenzhen Research Institute,Xi'an Jiaotong Universtiy,Shenzhen,Guangdong 518057,China;Lab of Social Intelligence&Complex Data Processing,School of Software,Xi'an Jiaotong University,Xi'an,Shaanxi 710049,China)
出处 《中文信息学报》 CSCD 北大核心 2019年第11期15-30,共16页 Journal of Chinese Information Processing
基金 国家自然科学基金(61741208,F020807) 教育部“云数融合科教创新”基金(2017B00030) 中央高校基本科研业务费(ZDYF2017006) 2018年中央高校建设世界一流大学(学科)和特色发展引导专项资金(PY3A022) 2018年西安市碑林区科技项目(GX1803) 2019年教育部社科重大项目(18JZD022) 2019年深圳市科技创新项目(JCYJ20180306170836595)
关键词 社交媒体 多模态信息 跨媒介 事件脉络挖掘 social media multimodal data cross-media event summarization
  • 相关文献

参考文献7

二级参考文献35

  • 1刘云峰,齐欢,Xiang’en Hu,Zhiqiang Cai.潜在语义分析权重计算的改进[J].中文信息学报,2005,19(6):64-69. 被引量:19
  • 2俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:155
  • 3Weng J, Lee B S. Event detection in Twitter//Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. Barcelona, Spain, 2011:401-408. 被引量:1
  • 4Kleinberg J. Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 2003, 7(4) : 373-397. 被引量:1
  • 5FungGPC, YuJ X, Yu PS, et al. Parameter freebursty events detection in text streams//Proceedings of the 31st In- ternational Conference on Very Large Data Bases. Trond- helm, Norway, 2005: 181-192. 被引量:1
  • 6He Q, Chang K, Lim E P. Analyzing feature trajectories for event detection//Proceedings of the 30th Annual Internation- al ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA, 2007:207-214. 被引量:1
  • 7Allan J, Papka R, Lavrenko V. On-line new event detection and tracking//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in In- formation Retrieval. Melbourne, Australia, 1998:37-45. 被引量:1
  • 8AlSumait L, Barbarh D, Domenieoni C. On-line LDA:Adaptive topic models for mining text streams with applica- tions to topic detection and tracking//Proceedings of the IEEE International Conference on Data Mining. Pisa, Italy, 2008:3-12. 被引量:1
  • 9Han J, Pei J, Yin Y. Mining frequent patterns without can- didate generation//Proceedings of ACM's Special Interest Group on Management of Data. Dallas, Texas. 2000, 29 (2) : 1-12. 被引量:1
  • 10Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976. 被引量:1

共引文献113

同被引文献45

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部