摘要
针对在网络数据库中海量数据压缩传递方法的研究过程中,由于压缩结果的低关联性容易陷入局部最小,导致压缩传递成本高、效果差的问题。提出采用小波算法的网络数据库中海量数据压缩传递方法。建立初始的网络数据库中海量数据小波矩阵,在将网络数据库中海量数据时间性与相关性信息映射为矩阵的小波变换与行变换,并去除冗余数据降低数据收集的总传输量,在一定的范围内控制数据传输误差,改进算法相比传统算法的误差得到降低。实验结果证明,小波算法的网络数据库中海量数据压缩传递方法降低了网络数据库中海量数据压缩传递的成本,取得了令人满意的结果。
Due to the low correlation of compression,traditional massive data compression and transferring method in network database is easy to fall into local minimum,which results in high compression and transferring cost and poor effect.A massive data compression and transferring method in network database based on wavelet algorithm is proposed.The initial wavelet matrix of massive data in network database is set up,and the timeliness and relevance information of massive data in the network database are mapped as the wavelet transform and line transform of matrix,the redundant data are removed and the total transmission of data collection is reduced.The data transmission error is controlled within a certain range,and the error of the improved algorithm is reduced compared with the traditional algorithm.Simulation verifies that the proposed data compression and transferring method can reduce the cost of massive data compression and transferring,and has satisfactory results.
出处
《计算机仿真》
CSCD
北大核心
2016年第5期196-199,共4页
Computer Simulation
关键词
网络数据库
海量数据
小波分段常值压缩
Network database
Massive data
Wavelet piecewise constant compression