期刊文献+

基于支持向量机-遗传算法灰树花发酵模型的建立及优化 被引量:2

Establishment and Optimization of a Predictive Model for the Growth and Exopolysaccharide Production of Grifola frondosa Based on Support Vector Machine and Genetic Algorithm
下载PDF
导出
摘要 对食用药用真菌灰树花发酵进行建模,获得使目标发酵产物达到最大产量的培养条件。运用支持向量机(support vector machine,SVM)方法进行非线性拟合,并采用遗传算法预测优化培养基成分,结果表明其能够较好预测灰树花发酵过程。运用此方法可在灰树花发酵生产过程中根据所需产物控制发酵条件与时间,具有较高指导意义。 To obtain the best medium constituents and culture conditions for maximum production of exopolysaccharides(EPS) by Grifola frondosa, nonlinear fitting was done using support vector machine(SVM) and the response variables, EPS production and mycelial biomass, were predicted using genetic algorithm. The results showed that the nonlinear model performed well in predicting the growth and EPS production of Grifola frondosa. The approach proposed in this study can provide a significant guideline to control culture conditions and time for the production of desired products by Grifola frondosa.
出处 《食品科学》 EI CAS CSCD 北大核心 2016年第11期143-146,共4页 Food Science
基金 安徽大学现代生物制造协同中心开放课题(20150455) 安徽大学重点教学研究项目(ZLT52015038)
关键词 支持向量机 遗传算法 发酵模型 灰树花 support vector machine(SVM) genetic algorithm fermentation model Grifola frondosa
  • 相关文献

参考文献25

  • 1HEIKAMP K, BAJORATH J. Support vector machines for drugdiscovery[J]. Expert Opinion on Drug Discovery, 2014, 9(1): 93-104.DOI:10.1517/17460441.2014.866943. 被引量:1
  • 2LI G Q, WEN C Y, LI Z G, et al. Model-based online learning withkernels[J]. IEEE Transactions on Neural Networks and LearningSystems, 2013, 24(3): 356-369. DOI:10.1109/TNNLS.2012.2229293. 被引量:1
  • 3NEGRI R G, DUTRA L V, SANT’ANNA S J S. An innovativesupport vector machine based method for contextual imageclassification[J]. ISPRS Journal of Photogrammetry and RemoteSensing, 2014, 87: 241-248. DOI:10.1016/j.isprsjprs.2013.11.004. 被引量:1
  • 4张文修,梁怡编著..遗传算法的数学基础[M].西安:西安交通大学出版社,2001:214.
  • 5崔凤杰..灰树花深层发酵条件优化及其菌丝体抗肿瘤糖肽的研究[D].江南大学,2006:
  • 6SHIH L, CHOU B W, CHEN C C, et al. Study of mycelial growth andbioactive polysaccharide production in batch and fedbatch culture ofGrifola frondoa[J]. Bioresource Technology, 2008, 99(4): 785-793.DOI:10.1016/j.biortech.2007.01.030. 被引量:1
  • 7MIZUNO T, OHSAWA K, HAGIWARA N, et al. Fractionation andcharacterization of antitumor polysaccharides from Maitake, Grifolafrondosa[J]. Agricultural and Biological Chemistry, 1986, 50(7): 1679-1688.DOI:10.1080/00021369.1986.10867644. 被引量:1
  • 8李小定,吴谋成,曾晓波,荣建红.灰树花多糖PGF-1对荷瘤小鼠免疫功能的影响[J].华中农业大学学报,2002,21(3):261-263. 被引量:18
  • 9KUBO K, NANBA H. Anti-hyperliposis effect of maitake fruit body(Grifola frondosa). I[J]. Biological and Pharmaceutical Bulletin, 1997,20(7): 781-785. DOI:10.1248/bpb.20.781. 被引量:1
  • 10KUBO K, AOKI H, NANBA H. Anti-diabetic activity present inthe fruit body of Grifola frondosa (Maitake). I[J]. Biological andPharmaceutical Bulletin, 1994, 17(8): 1106-1110. DOI:10.1248/bpb.17.1106. 被引量:1

二级参考文献68

共引文献71

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部