期刊文献+

Effect of ethanedioic acid functionalization on Ni/Al_2O_3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters 被引量:1

Effect of ethanedioic acid functionalization on Ni/Al_2O_3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters
下载PDF
导出
摘要 The effect of ethanedioic acid(Ed A) functionalization on Al2O3 supported Ni catalyst was studied on the hydrodeoxygenation(HDO), isomerization, kinetics and Arrhenius parameters of octadec-9-enoic acid(OA) into biofuel in this report. This was achieved via synthesis of two catalysts; the first, nickel alumina catalyst(Ni/Al2O3) was via the incorporation of inorganic Ni precursor into Al2O3; the second was via the incorporation nickel oxalate(Ni Ox) prepared by functionalization of Ni with Ed A into Al2O3 to obtain organometallic Ni Ox/Al2O3 catalyst. Their characterization results showed that Ni species present in Ni/Al2O3 and Ni Ox/Al2O3 were 8.2% and 9.3%, respectively according to the energy dispersive X-ray result. Ni Ox/Al2O3 has comparably higher Ni content due to the Ed A functionalization which also increases its acidity and guarantees high Ni dispersion with weaker metal-support-interaction leading to highly reducible Ni as seen in the X-ray diffraction, X-ray photoelectron spectroscopy, TPR and Raman spectroscopy results. Their activities tested on the HDO of OA showed that Ni Ox/Al2O3 did not only display the best catalytic and reusability abilities, but it also possesses isomerization ability due to its increased acidity. The Ni Ox/Al2O3 also has the highest rate constants evaluated using pseudo-first-order kinetics,but the least activation energy of 176 k J/mol in the biofuel formation step compared to 244 k J/mol evaluated when using Ni/Al2O3. The result is promising for future feasibility studies toward commercialization of catalytic HDO of OA into useful biofuel using organometallic catalysts. The effect of ethanedioic acid(Ed A) functionalization on Al2O3 supported Ni catalyst was studied on the hydrodeoxygenation(HDO), isomerization, kinetics and Arrhenius parameters of octadec-9-enoic acid(OA) into biofuel in this report. This was achieved via synthesis of two catalysts; the first, nickel alumina catalyst(Ni/Al2O3) was via the incorporation of inorganic Ni precursor into Al2O3; the second was via the incorporation nickel oxalate(Ni Ox) prepared by functionalization of Ni with Ed A into Al2O3 to obtain organometallic Ni Ox/Al2O3 catalyst. Their characterization results showed that Ni species present in Ni/Al2O3 and Ni Ox/Al2O3 were 8.2% and 9.3%, respectively according to the energy dispersive X-ray result. Ni Ox/Al2O3 has comparably higher Ni content due to the Ed A functionalization which also increases its acidity and guarantees high Ni dispersion with weaker metal-support-interaction leading to highly reducible Ni as seen in the X-ray diffraction, X-ray photoelectron spectroscopy, TPR and Raman spectroscopy results. Their activities tested on the HDO of OA showed that Ni Ox/Al2O3 did not only display the best catalytic and reusability abilities, but it also possesses isomerization ability due to its increased acidity. The Ni Ox/Al2O3 also has the highest rate constants evaluated using pseudo-first-order kinetics,but the least activation energy of 176 k J/mol in the biofuel formation step compared to 244 k J/mol evaluated when using Ni/Al2O3. The result is promising for future feasibility studies toward commercialization of catalytic HDO of OA into useful biofuel using organometallic catalysts.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期158-168,共11页 能源化学(英文版)
基金 financial support from Higher Impact Research-Ministry of Higher Education project no D000011-16001 of the Faculty of Engineering,University of Malaya,Malaysia and the Mitsubishi Corporation Education Trust Fund,University Teknologi PETRONAS,Malaysia
关键词 Octadec-9-enoic acid Hydrodeoxygenation Isomerization Nickel oxalate Biofuel Octadec-9-enoic acid Hydrodeoxygenation Isomerization Nickel oxalate Biofuel
  • 相关文献

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部