摘要
本文研究了Gorenstein投射维数的相关问题.利用经典同调维数的研究方法,给出了Gorenstein投射维数有限模的Gorenstein投射维数的一个刻画,并利用这一结果证明了Gorenstein完全环和Artin环的Gorenstein整体维数分别由各自的循环模和单模的Gorenstein投射维数来确定.这些结论丰富了Gorenstein同调代数理论.
In this paper,we consider some questions related to Gorenstein projective dimension.By using the method which study the classical homological dimension,we give a sufficient condition of Gorenstein projective dimension of a module smaller than or equal to n when it is finite.As an application,we prove that the Gorenstein global dimension of a Goresntein perfect ring or an artinian ring is completed determined by the Gorenstein projective dimensions of the cyclic modules and simple modules over it respectively,which extended the theory of Gorenstein homological algebra.
出处
《数学杂志》
CSCD
北大核心
2016年第3期627-632,共6页
Journal of Mathematics
基金
国家自然科学青年基金(11401001)
安徽省高校优秀人才基金(2013SQRL071ZD)
安徽大学博士启动基金(33190141)