期刊文献+

Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste 被引量:1

Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste
原文传递
导出
摘要 ABSTRACT In this experimental study, carbon nanotubes (CNTs) and carbon nanofibers (CNFs) were dispersed by intensive sonication in water in the presence of superplasticizer and subsequently mixed with Portland cement with water/ cement ratios varying between 0.3 and 0.4. The autogenous shrinkage in the fresh stage was investigated. The CNTs and CNFs were characterized by high resolution scanning electron microscopy (SEM) and the hydrated pastes were studied by X-ray diffraction and SEM. The results showed a reduction of the autogenous shrinkage by 50% for pastes containing small amounts (0.01 wt%) of nanomaterials. Higher additions appeared to be less effective. The highest reduction of shrinkage was observed for carbon nanofibers which were long, rather straight and had diameters of around 200 nm. The result showed that the addition of nanomaterials accelerated the hydration processes especially in the early stages of hydration. The effect was the most pronounced in the case of functionalized nanotubes. The proposed mechanism resulting in the reduction of the autogenous shrinkage was a combination of nano-reinforcing effects, alterations of hydration and microstructure of the hydrated matrix. ABSTRACT In this experimental study, carbon nanotubes (CNTs) and carbon nanofibers (CNFs) were dispersed by intensive sonication in water in the presence of superplasticizer and subsequently mixed with Portland cement with water/ cement ratios varying between 0.3 and 0.4. The autogenous shrinkage in the fresh stage was investigated. The CNTs and CNFs were characterized by high resolution scanning electron microscopy (SEM) and the hydrated pastes were studied by X-ray diffraction and SEM. The results showed a reduction of the autogenous shrinkage by 50% for pastes containing small amounts (0.01 wt%) of nanomaterials. Higher additions appeared to be less effective. The highest reduction of shrinkage was observed for carbon nanofibers which were long, rather straight and had diameters of around 200 nm. The result showed that the addition of nanomaterials accelerated the hydration processes especially in the early stages of hydration. The effect was the most pronounced in the case of functionalized nanotubes. The proposed mechanism resulting in the reduction of the autogenous shrinkage was a combination of nano-reinforcing effects, alterations of hydration and microstructure of the hydrated matrix.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第2期224-235,共12页 结构与土木工程前沿(英文版)
关键词 carbon nanotubes SHRINKAGE cement paste carbon nanotubes, shrinkage, cement paste
  • 相关文献

同被引文献11

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部