期刊文献+

基于自适应权值的点云三维物体重建算法研究 被引量:3

Point-Cloud 3D Object Reconstruction by Using Adaptive Weighting Function
下载PDF
导出
摘要 基于三维扫描点云数据的三维物体重建是计算机图形学中非常重要的课题,在计算机动画、医学图像处理等多方面都有应用。其中基于最小二乘问题的Levenberg-Marquart算法和基于极大似然估计的M-Estimator算法都是不错的方案。但是当点的数量过多过少或者点云中有噪声时,这些方案产生的结果都会有较大的误差,影响重建的效果。为了解决这两个问题,结合Levenberg-Marquart算法和M-Estimator算法,提出了一种新的算法。该算法结合Levenberg-Marquart算法较快的收敛性和M-Estimator算法的抗噪性,能很好地解决点数量较多和噪声点影响结果的问题。通过在M-Estimator的权重函数上进行改进,提出自适应的权值函数,用灵活变动和自适应的值代替原来的固定值,使算法在噪声等级较高时也能表现良好。最后将算法应用在球体和圆柱上,并和最新的研究成果进行对比,数据说明算法无论是在点云数量较多还是在噪声等级较高的情况下都明显优于其他已知算法。 3D object reconstruction based on point clouds is an important field in computer graphics which have been used in computer animation, medical image processing and so on. Many good algorithms have been developed to solve this problem such as Levenberg-Marquart algorithm based on least squares and M-Estimator based on maximum likelihood estimation. But all of these algorithms are sensitive to noise and the data number of too lager or too little. And the result of these algorithms would have a larger error, which can influence the effect of reconstruction. In order to solve these problems, we propose a new algorithm which is based on Levenberg-Marquart algorithm and M-Estimator. Our algorithm takes advantage of high convergence of Levenberg-Marquart algorithm and noise proof of M-Estimator, so it can solve two problems mentioned above. And we improved the weighting function of M-Estimator which replaces the constant value with the flexible and adaptive value. This way makes our algorithm to behave very well in large number of points and high level of noise. We apply our algorithm on ball and cylinder and compare with the latest research results. From the experimental data we can see that our algorithm behaves much well than the others.
出处 《图学学报》 CSCD 北大核心 2016年第2期143-148,共6页 Journal of Graphics
基金 国家自然科学基金项目(U1304616 61502220)
关键词 Levenberg-Marquart M-ESTIMATOR 自适应权值 点云 重建 Levenberg-Marquart M-Estimato adaptive weighting function point cloud reconstruction
  • 相关文献

参考文献11

  • 1Shah T R. Automatic Reconstruction of Industrial installations using point clouds and images [D]. Shanghai Shanghai Jiao tong University, 2006. 被引量:1
  • 2Shakarji C M. Least-squares fitting algorithms of the nistalgorithm testing system [J]. Journal of Research of the National Institute of Standards and Technology, 1998, 103(6): 633-641. 被引量:1
  • 3Ranganathan A. The levenberg-marquardt algorithm [J]. Tutoral on LM Algorithm, 2004, 11(1): 101-110. 被引量:1
  • 4Zhang Z Y. Parameter estimation techniques: a tutorial with application to conic fitting [J]. Image and Vision Computing Journal, 1997, 15(1): 59-76. 被引量:1
  • 5Bustos O H, Lucinil M M, Frery A C. M-Estimators of roughness and scale for GO -modelled SAR imagery [J]. EURASIP Journal on Applied Signal Processing, 2002, 1 : 105-114. 被引量:1
  • 6Tyler D E. A distribution-bee M-Estimator of multivariate scatter [J]. The Annals of Statistics, 1987, 15(1): 234-251. 被引量:1
  • 7Smolic A, Ohm J R. Robust global motion estimation using a simplified M-Estimator approach [J]. Image Processing, 2000, 1: 868-871. 被引量:1
  • 8Clark D I, Osborne M R. Finite algorithms for Huber's M-Estimator [J]. Society of Industrial and Applied Mathematics, 1986, 7(1): 72-85. 被引量:1
  • 9李胜男,林晓,陈言,马利庄.基于点云的球面三维逆向建模[J].图学学报,2013,34(3):49-52. 被引量:6
  • 10刘进.自适应的基于点云的CAD模型重建方法[J].计算机应用,2013,33(9):2617-2622. 被引量:3

二级参考文献26

  • 1宋敏清,丁国清,颜国正.一种基于最小二乘估计的玻壳曲面拟合方法[J].计算机测量与控制,2004,12(6):569-571. 被引量:4
  • 2Cavalier T M, Lehtihet E A, Del Castillo E, et al. An adaptive sphere-fitting method for sequential tolerance control [J]. International Journal of Production Research, 2002, 40(12): 2757-2767. 被引量:1
  • 3Levenberg K. A method for the solution of certain non-linear problems in least squares [J]. Quarterly of Applied Mathematics, 1944, 2(2): 164-168. 被引量:1
  • 4Ananth R. The levenberg-marquardt algorithm [R]. 8th June, 2004. 被引量:1
  • 5Rabbani T S. Automatic reconstruction of industrial installations using point clouds and images [D]. Delft University of Technology, 2006. 被引量:1
  • 6Sun Wenjuan, Hill M, McBride J W. An investigation of the robustness of the nonlinear least-squares sphere fitting method to small segment angle surfaces [J]. Precision Engineering, 2008, 32(1): 55-62. 被引量:1
  • 7Vapnyarskii I B. Lagrange multipliers [M]. Hazewinkel, Michiel. Encyclopedia of Mathematics. Berlin: Springer. ISBN 978-1-55608-010-4. 被引量:1
  • 8VOSSELMAN G, GOTRE B G H, SITHOLE G, et al. Recognizing structure in laser scanner point clouds [ C]// International Archives of Photogrammetry, Remote Sensing and Spatial Information Sci- ences. Istanbul, Turkey: ISPRS Press, 2004, 46:33-38. 被引量:1
  • 9FISCHLER M A, BOLLES R C. Random sample consensus: a par- adigm for model fitting with applications to image analysis and auto- mated cartography [ J]. Communications of the ACM, 1981,24(6): 381 - 395. 被引量:1
  • 10HOUGH P V C. Method and means for recognizing complex pat- terns, USA, 3066954[ P]. 1962. 被引量:1

共引文献7

同被引文献13

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部