期刊文献+

凸组合核函数的支持向量机高光谱图像分类 被引量:5

Classification of hyperspectral image by convex combination kernels function SVM
下载PDF
导出
摘要 支持向量机的高光谱图像分类中,单核函数存在局限性。为了提高分类器的分类精度和支持向量机模型的泛化能力,利用高斯径向基核和多层感知核进行凸组合构造复合核函数支持向量机,证明了该函数满足作为核函数的判决Mercer条件,并进一步将凸组合核函数支持向量机应用到高光谱图像分类中,完成了建模和实验验证。实验结果表明,凸组合核函数具有较好的鲁棒性,且该类支持向量机的分类精度和KAPPA系数较单核SVM均得到了有效的提高,是一种解决多分类问题行之有效的分类器。 In support vector machine( SVM) hyperspectral image classification,monocyte function has its limitation.In order to improve the classifier accuracy and generalization ability of SVM model,a complex kernel function SVM using the convex combination of radial basis function kernel and sigmoid kernel was constructed,and it proves that the function satisfies a judgment called Mercer condition as a kernel function.Then,the convex combination of kernels SVM was applied to hyperspectral image classification,and the modeling and experimental validation were completed.The experimental results show that the convex combination kernel has better robustness.As the classification accuracy and KAPPA coefficient have been effectively improved compared to that of the single-core SVM,the new SVM is an effective solution to the problem of multi-classification.
机构地区 电子工程学院
出处 《激光与红外》 CAS CSCD 北大核心 2016年第5期627-633,共7页 Laser & Infrared
基金 国家自然科学基金资助项目(No.61179036 No.61201379)资助
关键词 高光谱图像 支持向量机 核函数 凸组合 hyperspectral image SVM kernel fuction convex combination
  • 相关文献

参考文献14

  • 1张兵,高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2012. 被引量:1
  • 2杜培军,谭琨,夏俊士.高光谱遥感影像分类与支持向量机应用研究[M].北京:科学出版社,2012. 被引量:16
  • 3Fang Leyuan, Li Shutao, et al. Classif-ication of Hyper- spectral Images by Exploi-ting Spectral Spatial Information of Super-pixel via Multiple K-ernels [ J ]. IEEE Trans -actions on Geoscience and Remote Sensing, 2015, 53 (12) :6663 - 6674. 被引量:1
  • 4Li Jiayi, Zhang Hongyan, Zhang Liangpei. A nonlinear multiple feature Iearn-ing classifier for hyperspectral ima- ges with limited training samples [ J ]. IEEE Journal of Se- lected Topics in Applied Earth Observations and Remote Sensing,2015,8 : 1 - 11. 被引量:1
  • 5Abe, Bolarde Tolulope. Hyperspectral data classification based on local polynomial approximation [ C ]. ICPRAM 2015 -4th. International Conference on Pattern Recogni- tion Applications and Methods. 2015,1:380-385. 被引量:1
  • 6Cortes C, Vapnik VN. Support vector networks [ J ]. Ma- chine Learning, 1995,20:273 - 297. 被引量:1
  • 7Bemabe,Sergio,Marpu,et al.. Spectral spatial classifica- tion of multispectral images using kernel feature space representation [ J ]. IEEE Geoscience and Remote Sensing Letters ,2014:288 - 292. 被引量:1
  • 8Bahria S, Essoussi N, Limam M. Hyperspectral data clas- sification using geostatistics and support vector machines [ J ]. Remote Sensing Letters,2011,2 (2) :99 - 106. 被引量:1
  • 9Roli F, Fumera G. Support vector machines for remote - sensing image classification [ J ]. Proc. SPIE, 2001,3584 : 221 - 232. 被引量:1
  • 10唐晓燕,高昆,刘莹,倪国强.基于端元优化的非线性高光谱分解算法[J].激光与红外,2014,44(9):1050-1054. 被引量:2

二级参考文献21

共引文献42

同被引文献56

引证文献5

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部