期刊文献+

基于相关向量机的网络入侵检测算法 被引量:2

Intrusion Detection Method Based on Relevance Vector Machine
原文传递
导出
摘要 针对支持向量机理论中存在的问题:训练样本数量多以及必须满足Mercer条件等,提出了一种基于相关向量机(RVM)的网络入侵检测方法。首先采用"删除特征"法对KDD 99数据集中的41个特征进行评级,筛选出针对不同入侵类型的重要特征和非重要特征,然后只选择重要特征进行匹配。结果表明,这种方法与基于支持向量机(SVM)的入侵检测模型相比,具有更高的检测率和更低的误警率。 For some problems in support vector machine theory, such as the large amount of training samples and the necessity to satisfy the Mercer conditions, etc. a new method based on relevant vector machine algorithm for network intrusion detection is proposed. First, the "feature deduction" method is applied to rating the 41 features in the KDD 99 dataset, and the important features and unimportant features are selected according to different attack types, and only the important features could, in IDS, effectively increase the detection rate and reduce the false alarm rate and the detecting time. Comparison with the SVM-based model indicates that the proposed RVM-based model is of higher detection probability and much lower false alarm rate.
作者 夏俊杰 何迪
出处 《信息安全与通信保密》 2010年第8期47-48,51,共3页 Information Security and Communications Privacy
基金 国家自然科学基金资助项目(批准号:60802058) 教育部留学回国人员科研启动基金资助项目
关键词 入侵检测 支持向量机 相关向量机 KDD 99数据集 intrusion detection support vector machine relevance vector machine KDD 99 dataset
  • 相关文献

参考文献2

二级参考文献3

共引文献8

同被引文献27

  • 1仲勇,薛质.基于免疫的分布式入侵检测模型研究[J].信息安全与通信保密,2007,29(6):206-209. 被引量:2
  • 2Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995:11-13. 被引量:1
  • 3Sankar Mahadevan, Sirish L Shah. Fault detection and diagnosis in process data using one-class support vector machines[J]. J of Process Control, 2009, 19(10): 1627- 1639. 被引量:1
  • 4Duan Qing, Zhao Jianguo, Ma Yan. RVM and SVM for classification in transient stability assessment[C]. 2010 Asia-Pacific Power and Energy Engineering Conf (APPEEC). Chengdu, 2010: 1-4. 被引量:1
  • 5Bilgin G, Erturk S, Yildirim T. Segmentation of hyper spectral images via subtractive clustering and cluster validation using one-class support vector machines[J]. IEEE Trans on Geoscience and Remote Sensing, 2011, 49(8): 2936-2944. 被引量:1
  • 6Subimal Ghosh, Mujumdar P E Statistical downscaling of GCM s:mulations to stream flow using relevance vector machine[J]. Advances in Water Reso:ces, 2008, 31(1): 132-146. 被引量:1
  • 7Clodoaldo A M Lima, Andr6L V Coelho, Sandro Chagas. Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines[J]. Expert Systems with Applications, 2009, 36(6): 10054-10059. 被引量:1
  • 8John Flake, Todd K Moon, Mac McKee, et al. Application of the relevance vector machine to canal flow prediction in the Sevier River Basin [J]. Agricultural Water Management, 2010, 97(2): 208-214. 被引量:1
  • 9Suresh S, Sujit P B, Rao A K. Particle swarm optimization approach for multi-objective composite box- beam design[J]. Composite Structures, 2007, 81(4): 598- 605. 被引量:1
  • 10Tipping M E, Faul A C. Fast marginal likelihood maximization for sparse Bayesian models[C]. Proc of the 9th Int Workshop on Artificial Intelligence and Statistics. Key West, 2003: 3-6. 被引量:1

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部