期刊文献+

UWSNs中基于压缩感知的移动数据收集方案 被引量:1

Mobile data collection scheme based on compressive sensing in UWSNs
下载PDF
导出
摘要 由于水下无线传感器网络(UWSNs)工作环境的特殊性,降低节点能耗和保证数据收集的实时性是至关重要的问题。提出一种基于压缩感知(CS)的移动数据收集方案。以DEBUC协议和CS理论为基础,簇内节点依据设计的稀疏测量矩阵决定是否参与压缩采样,并将获得的测量值传输至簇头。通过AUV的移动来收集各个簇头上的数据到数据中心,该问题被建模为带有邻域的旅行商问题,并提出了近似算法进行求解。在数据中心处利用CS重构算法进行数据重构。仿真实验结果表明:相比于已有的水下移动数据收集算法,该方案在保证数据收集可靠性的同时,降低了数据收集延时,延长了网络寿命。 Due to special applying environment,reducing energy consumption of nodes and guarantee real-time of data collection is critical issues for underwater wireless sensor networks( UWSNs). A mobile data collection scheme based on compressive sensing( CS—MDC) is proposed. On the basis of distributed energy-balanced unequal clustering( DEBUC) protocol and compressive sensing theory,cluster nodes decide whether to participate in compressive sampling according to the designed sparse measurement matrix,and transmit obtained measurement value to cluster head. Data at cluster head is collected by movement of autonomous underwater vehicle( AUV) and transmitted to data center,which is modeled as traveling salesman problem( TSP) with neighborhoods,and an approximate algorithm is proposed to solve this problem. Data is reconstructed by using compressive sensing reconstruction algorithm at data center. Simulation results show that,compared with existing underwater mobile data collection algorithms,the proposed scheme effectively reduce data collection delay and prolongs lifetime of network,at the same time,assure reliability of data collection.
作者 李鹏 王建新
出处 《传感器与微系统》 CSCD 2016年第5期49-51,63,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61472449 61173169 61402542)
关键词 水下无线传感器网络 压缩感知 移动数据收集 测量矩阵 能耗 延时 underwater wireless sensor networks(UWSNs) compressive sensing(CS) mobile data collection(MDC) measurement matrix energy consumption delay
  • 相关文献

参考文献12

二级参考文献33

  • 1彭爱平,郭晓松,蔡伟,谭立龙.无线传感器网络能量管理研究[J].传感器与微系统,2007,26(8):1-5. 被引量:11
  • 2Akyidiz L F, Su W, Sankarasubramaniam Y, et al.. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40(8): 102-114. 被引量:1
  • 3Quer G, Masiero R, and Munaretto D. On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[C]. Proceedings of Information Theory and Applications Workshop, San Diego, 2009: 206-215. 被引量:1
  • 4Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 5Xu Zhi-qiang. Compressed sensing: a survey[J]. Scientia Sinica Mathematica, 2012, 42(9): 865-877. 被引量:1
  • 6Luo C, Wu F, Sun J, st al.. Compressive data gathering for large-scale wireless sensor networks[C]. Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, Beijing, 2009: 145-156. 被引量:1
  • 7Luo J, Xiang L, and Rosenberg C. Does compressed sensing improve the throughput of wireless sensor networks?[C]. Proceedings of IEEE International Conference on Communications, Cape Town, 2010: 1-6. 被引量:1
  • 8Wang W, Garofalakis M, and Ramchandran K. Distributed sparse random projections for refinable approximation[C]. Proceedings of the 6th International Symposium on Information Processing in Sensor Networks, Cambridge, 2007: 331-339. 被引量:1
  • 9Lee S, Pattern S, Sathiamoorthy M, et al.. Spatially-localized compressed sensing and routing in multi-hop sensor networks [C]. Proceedings of the Third International Conference on Geosensor Networks, Oxford, 2009: 11-20. 被引量:1
  • 10Ell M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5702. 被引量:1

共引文献246

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部