期刊文献+

基于压缩感知和WSNs的井下应急语音通信系统设计 被引量:3

Design of emergency voice communication system in coal mine based on compressive sensing and WSNs
下载PDF
导出
摘要 考虑到井下应急救灾的需要,设计了一种基于压缩感知和无线传感器网络(WSNs)的矿井应急语音通信系统。根据语音信号的稀疏性,采用压缩感知的方法,对语音信号进行随机采样并传输,在Sink接收端,分别利用OMP算法和Co Sa MP算法进行信号重构,对比仿真实验表明:Co Sa MP重构效果较好。考虑到井下无线信号传输受限,进行了井下无线通信实验,表明在通信距离为20 m情况下,可实时可靠地实现井下应急语音通信。 In view of current status of emergency relief in coal mine,an emergency voice communication system based on compressive sensing and WSNs is designed. According to sparse characteristic of voice signal,method of compressive sensing is adopted for voice signal random sampling and transmission. In receiving end of Sink,OMP algorithm and Co Sa MP algorithm are used for signal reconstruction respectively. The simulation experiment shows that Co Sa MP is better than OMP. Considering the transmission of wireless signal is limited,underground wireless communication experiment is conducted,it shows that in the cases of communication distance is 20 m; emergency voice communication in coalmine can be realized in real time and reliably.
出处 《传感器与微系统》 CSCD 2015年第12期108-110,114,共4页 Transducer and Microsystem Technologies
基金 国家科技支撑计划资助项目(2013BAK06B05) 安徽省自然科学基金资助项目(1308085MF105) 安徽省国际科技合作计划项目(10080703003) 安徽省第七批"115"产业创新团队项目 安徽省高校自然科学研究重点项目(KJ2013A237) 安徽省校企合作实践基地项目
关键词 应急语音通信 压缩感知 无线传感器网络 OMP CoSaMP emergency voice communications compressive sensing WSNs OMP CoSaMP
  • 相关文献

参考文献7

二级参考文献64

  • 1丁恩杰,马方清.监控系统与现场总线[M].徐州:中国矿业大学出版社.2005. 被引量:3
  • 2罗亚非.凌阳16位单片机应用基[M].北京:北京航空航天大学出版社,2005. 被引量:1
  • 3D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306. 被引量:1
  • 4M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598. 被引量:1
  • 5I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457. 被引量:1
  • 6T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274. 被引量:1
  • 7A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161. 被引量:1
  • 8E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509. 被引量:1
  • 9E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308. 被引量:1
  • 10S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415. 被引量:1

共引文献169

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部