期刊文献+

基于时间序列和任务调度的Web数据聚类算法 被引量:4

Web data clustering algorithm with time series and task scheduling
下载PDF
导出
摘要 为了实现Web服务请求数据的快速聚类,并提高聚类的准确率,提出一种基于增量式时间序列和任务调度的Web数据聚类算法,该算法进行了Web数据在时间序列上的聚类定义,并采用增量式时间序列聚类方法,通过数据压缩的形式降低Web数据的复杂性,进行基于服务时间相似性的时间序列数据聚类。针对Web集群服务的最佳服务任务调度问题,通过以服务器执行能力为标准来分配服务任务。实验仿真结果表明,相比基于网格的高维数据层次聚类算法和基于增量学习的多目标模糊聚类算法,提出的算法在聚类时间、聚类精度、服务执行成功率上均获得了更好的效果。 In order to achieve fast clustering Web service request data and improve the accuracy of clustering, a Web data clustering algorithm with incremental sorting and retrieval interaction is proposed. The algorithm makes Web data clustering be defined in the time sequence, and uses time series incremental clustering method. First, it reduces the complexity of Web data through data in compressed form, then based on service time similarity, time series data clustering is done. Finally,for the problem of the best service task scheduling Web cluster services, through the implementation capacity of the server as a standard the service tasks are assigned. Simulation results show that compared with high-dimensional data grid-based hierarchical clustering algorithm and incremental learning based multi-objective fuzzy clustering algorithm, the algorithm proposed in this paper at the time of clustering, the clustering accuracy, the success rate of all service execution get better results.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第9期159-163,共5页 Computer Engineering and Applications
关键词 Web数据聚类 时间序列 任务调度 Web data clustering time series task scheduling
  • 相关文献

参考文献15

  • 1Giatsoglou M,Vakali A.Capturing social data evolution using graph clustering[J].IEEE Internet Computing,2013,17(1):74-79. 被引量:1
  • 2Papalexakis E E,Sidiropoulos N D,Bro R.From K-means to higher-way co-clustering:multilinear decomposition with sparse latent factors[J].IEEE Transactions on Signal Processing,2013,61(2):493-506. 被引量:1
  • 3Dietze S,Sanchez-Alonso S,Ebner H,et al.Interlinking educational resources and the web of data:a survey of challenges and approaches[J].Program:Electronic Library and Information Systems,2013,47(1):60-91. 被引量:1
  • 4Chen C Q.Analysis of Web log data mining based on improved fuzzy clustering algorithm[J].Advanced Materials Research,2013,760:1896-1901. 被引量:1
  • 5刘建晓,王健,张秀伟,刘峰,李小霞.一种基于RDB中自身连接的Web服务聚类方法[J].计算机研究与发展,2013,50(S1):205-210. 被引量:4
  • 6刘铭,刘秉权,刘远超.面向信息检索的快速聚类算法[J].计算机研究与发展,2013,50(7):1452-1463. 被引量:12
  • 7Fan W,Bouguila N,Ziou D.Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(7):1670-1685. 被引量:1
  • 8Rana S,Jasola S,Kumar R.A boundary restricted adaptive particle swarm optimization for data clustering[J].International Journal of Machine Learning and Cybernetics,2013,4(4):391-400. 被引量:1
  • 9Krishnasamy G,Kulkarni A J,Paramesran R.A hybrid approach for data clustering based on modified cohort intelligence and K-means[J].Expert Systems with Applications,2014,41(13):6009-6016. 被引量:1
  • 10黄德才,李晓畅.基于相对密度的混合属性数据增量聚类算法[J].控制与决策,2013,28(6):815-822. 被引量:12

二级参考文献37

共引文献22

同被引文献37

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部