期刊文献+

极坐标下薄板弯曲问题的重心有理插值法

Barycentric rational interpolation collocation method for bending problem of a thin plate in polar coordinates
下载PDF
导出
摘要 利用重心有理插值配点法(BRICM)研究了极坐标下薄板的弯曲问题,该方法是以重心有理插值近似未知函数强迫微分方程在离散节点处成立,得到微分方程的离散代数方程组,进而采用重心有理插值的微分矩阵将离散代数方程组表达为矩阵的形式。利用置换法施加边界条件,求解微分方程组。数值算例结果表明,该方法在解决极坐标下薄板弯曲问题上公式简单,程序实施方便且计算精度高。 We apply barycentric rational interpolation collocation method (BRICM) to the bending problem of a thin plate in polar coordinates. It approximates an unknown function with barycentric rational interpolation by compelling a biharmonic equation to equal to the unknown function at discrete nodes, and acquires the discrete algebraic equations of the biharmonic equation. It further denotes the discrete algebraic equations as a matrix by the differential matrix of barycentric rational interpolation. It eventually solves the differential equations with a boundary conditions mixed replacement method. Numerical instances demonstrate that the method has simple calculation formulae for bending problem of a thin plate in polar coordinates, convenient program and high calculation precision.
出处 《山东科学》 CAS 2016年第2期82-87,共6页 Shandong Science
基金 国家自然科学基金(51379113)
关键词 极坐标 弯曲问题 重心有理插值 双调和方程 边界值 polar coordinate bending problem barycentric rational interpolation method biharmonic equation boundary value problem
  • 相关文献

参考文献16

  • 1DESHMUKH K C, WARBHE S D, KULKARNI V S. Quasi-static thermal deflection of a thin clamped circular plate due to heat generation [J]. Journal of Thermal Stresses, 2009, 32 (9) :877 - 886. 被引量:1
  • 2WANG Z Q, LI S C, Ping Y, et al. A highly accurate regular domain collocation method for solving potential problems in the irregular doubly connected domains[J]. Mathematical Problems in Engineering, 2014 (1) :1 -9. 被引量:1
  • 3MOHYUD-DIN S T, YILDIRIM A, HOSSEINI M M. An iterative algorithm for fifth-order boundary value problems [ J ]. World Applied Sciences Journal, 2010(5) :531 - 535. 被引量:1
  • 4VIRDI K S. Finite difference method for nonliear analysis of structures [J]. Journal of Constructional Steel Research, 2006, 62 (11) : 1210-1218. 被引量:1
  • 5KWON Y W, BANG H. The finite element method using MATLAB[M]. Boca Raton, FL, USA: CRC Press, Inc. 1996. 被引量:1
  • 6TANAKA M, MATSUMOTO T, OIDA S. A boundary element method applied to the elastostatic bending problem of beam-stiffened plates [J]. Engineering Analysis with Boundary Elements, 2000, 24 (10) : 751 - 758. 被引量:1
  • 7DONNING BM, LIU WK. Meshless methods for shear-deformable beams and plates [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1/2) : 47 - 71. 被引量:1
  • 8WANG X, BERT CW, STRIZ AG. Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates [J]. Computers & Structures, 1993, 48 (3) : 473 - 479. 被引量:1
  • 9SHAO W, WU X. Fourier differential quadrature method for irregular thin plate bending problems on Winkler foundation [J]. Engineering Analysis with Boundary Elements, 2011, 35 (35) :389 - 394. 被引量:1
  • 10ROSTAMIYAN Y, FEREIDOON A, DAVOUDABADI M R, et al. Anzlytical approach to investigation of deflection of circular plate under unifom load by homotopy load by homotopy perturbation method [ J ]. Mathematical and Computational Applications, 2010, 15(5) :816-821. 被引量:1

二级参考文献26

  • 1袁玉全,彭建设.复杂载荷下梁弯曲问题的微分求积法应用研究[J].四川理工学院学报(自然科学版),2006,19(5):81-84. 被引量:6
  • 2VIRDI K S. Finite difference method for nonliear analysis of structures [ J ]. Journal of Constructional Steel Research, 2006, 62 (11) : 1210 -1218. 被引量:1
  • 3RAJU I S, PHILLIPS D R, KRISHNAMURTHY T. A Meshless Method Using Radial Basis Functions for Beam Bending Problems [ EB/OL]. [ 2012 - 09 - 11 ] http ://ntrs. nasa. gov/archive/nasa/casi, ntrs. nasa. gov/20040191554_2004198262, pdf. 被引量:1
  • 4DIRAC P A M. The principles of quantum mechanics[ M]. Oxford: Oxford University Press, 1930. 被引量:1
  • 5SCHWARZ L. TheolT of distributions[M]. Paris: Hermann, 1966. 被引量:1
  • 6YAVARI A, SARKANI S, MOYER E T. On applications of generalized functions to beam bending problems [ J ]. International Journal of Solids and Structures, 2000, 37 (40) : 5675 -5705. 被引量:1
  • 7YAVARI A, SARKANI S. On applications of generalized functions to the analysis of Euler-Bernoulli beam-columns with jump discontinuities [ J ]. International Journal of Mechanical Sciences, 2001,43 (6) : 1543 - 1562. 被引量:1
  • 8FALSONE G. The use of generalised functions in the discontinuous beam bending differential equations[J]. International Journal of Engineering Education, 2002, 18 (3) : 337 - 343. 被引量:1
  • 9BERRUT J P, MITTELMANN H D. Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval[ J ]. Computational Mathematics and Applications, 1997, 33 (6) : 77 - 86. 被引量:1
  • 10BERRUT J P, BALTENSPERGER R, MIqTELMANN H D. Recent developments in barycentric rational interpolation [ J ]. International Series of Numerical Mathematics, 2005, 151 : 27 - 51. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部