期刊文献+

重心有理插值配点法分析矩形板自由振动 被引量:2

Analysis of free vibrations of rectangular plates by barycentric rational interpolation collocation method
下载PDF
导出
摘要 重心型有理函数插值在整个求解区间具有无穷次光滑性,且不存在极点,保证了计算的精度。本文在计算区间采用工程上常用的等距节点离散,利用数值稳定性好、计算精度高的重心有理插值配点法求解矩形板的自由振动,并与Chebyshev配点法等方法的计算结果做了对比。算例表明:重心有理插值配点法具有计算公式简单,程序实施方便和计算精度高的优点。 The barycentric rational interpolation bears no poles and arbitrary high approximation to ensure the accuracy of the calculation. The paper introduces, discrete ecomputational interval by equidistant nodes which is commonly used in engineering with numerical stability, and high precision, rational interpolation collocation for solving the free vibration of rectangular plates. And the paper compares Chebyshev collocation method with other methods concerning alculation results. Numerical results demonstrate that the proposed numerical method has advantages of simple formulations, easy programming and high precision.
出处 《山东建筑大学学报》 2009年第5期434-437,共4页 Journal of Shandong Jianzhu University
关键词 重心有理插值配点法 矩形板 自由振动 微分方程 barycentric rational interpolation collocation method rectangular plates free vibrations differential equation
  • 相关文献

参考文献21

  • 1Cheung Y K, Cheung M S. Flexural vibration of rectangular and other polygonal plates [ J ]. Journal of the Engineering Mechanics Divison (ASCE), 1971, 97(2):391 -411. 被引量:1
  • 2Fan S C, Cheung Y K. Flexural free vibration of rectangular with complex support conditions [ J ]. Journal of Sound and Vibration, 1984,93(1 ) :81 -94. 被引量:1
  • 3Leissa A W. The free vibration of rectangular plates [ J ]. Journal of Sound and Vibration, 1973,31 (2) :257 -293. 被引量:1
  • 4Warbuton G B. The free vibration of rectangular plates [ J ]. Proceedings of the Institution of Mechanical Engineer, 1954,168 ( 3 ) : 371 -384. 被引量:1
  • 5Chia C Y. Non-linear vibration of anisotropic rectangular plates with non-uniform edge constraints [ J ]. Journal of Sound and Vibration, 1985,101 (4) :539 -550. 被引量:1
  • 6Zitnan P. Vibration analysis of membranes and plates by a discrete least squares technique [ J ]. Journal of Sound and Vibration, 1996,195 (5) :595 - 605. 被引量:1
  • 7Donning B M, Liu W K. Meshless methods for shear-deformable beams and plates [ J ]. Computer Methods in Applied Mechanics and Engineering, 1998,152 ( 1 ) :47 - 71. 被引量:1
  • 8Lim C W, Liew K M. Vibration of perforated plates with round comers[J]. Journal of Engineering Meehanies(ASCE) ,1995,121 (2) :203 -213. 被引量:1
  • 9Hsu M H. Vibration analysis of isotropic and orthotropic plates with mixed boundary conditions [ J ]. Tamkang Journal of Science and Engineering, 2003,6 (4) :217 - 226. 被引量:1
  • 10Shu C, Richards B E. Application of generalized differential quadrature to structural problems [ J ]. International Journal for Numerical Methods in Engineering in Fluids, 1992,15 (7) :791 - 798. 被引量:1

二级参考文献36

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2李淑萍,王兆清,路允芳,鹿晓力.凸域上温度分布的无理函数插值近似方法[J].山东建筑工程学院学报,2006,21(3):189-192. 被引量:3
  • 3王兆清,李淑萍,唐炳涛.任意连续函数的多项式插值逼近[J].山东建筑大学学报,2007,22(2):158-162. 被引量:28
  • 4[5]Berrut J P,Baltensperger R,Mittelmann H D.Recent developments in barycentric rational interpolation,trends and applications in constructive approximation[A].In De Bruin M G,D Mache H,Szabados J,eds.International Series of Numerical Mathematics[C].Birkhuser:Verlag Basel,2005,151:27-51. 被引量:1
  • 5[6]Berrut J P,Trefethen L N.Barycentric lagrange interpolation[J].SIAM Review,2004,46 (3):501-517. 被引量:1
  • 6[7]Nicholas J H.The numerical stability of barycentric Lagrange interpolation[J].IMA Journal of Numerical Analysis,2004,24(4):547-556. 被引量:1
  • 7[8]Schneider C,Werner W.Some new aspects of rational interpolation[J].Math Comp,1986,47(175):285-299. 被引量:1
  • 8[9]Battles Z,Trefethen L N.An extension of MATLAB to continuous functions and operations[J].SIAM Journal of Science Computation,2004,25(5):1743-1770. 被引量:1
  • 9[2]Berrut J P,Baltensperger R,Mittelmann H D.Recent developments in barycentric rational interpolation,trends and applications in constructive approximation[A].Bruin de M G,Mache D H,Szabados J,et al.International Series of Numerical Mathematics[C].Birkhauser:Verlag Basel,2005.27-51. 被引量:1
  • 10[3]Berrut J P,Trefethen L N.Barycentric Lagrange interpolation[J].SIAM Review,2004,46(3):501-517. 被引量:1

共引文献49

同被引文献35

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部