摘要
重心型有理函数插值在整个求解区间具有无穷次光滑性,且不存在极点,保证了计算的精度。本文在计算区间采用工程上常用的等距节点离散,利用数值稳定性好、计算精度高的重心有理插值配点法求解矩形板的自由振动,并与Chebyshev配点法等方法的计算结果做了对比。算例表明:重心有理插值配点法具有计算公式简单,程序实施方便和计算精度高的优点。
The barycentric rational interpolation bears no poles and arbitrary high approximation to ensure the accuracy of the calculation. The paper introduces, discrete ecomputational interval by equidistant nodes which is commonly used in engineering with numerical stability, and high precision, rational interpolation collocation for solving the free vibration of rectangular plates. And the paper compares Chebyshev collocation method with other methods concerning alculation results. Numerical results demonstrate that the proposed numerical method has advantages of simple formulations, easy programming and high precision.
出处
《山东建筑大学学报》
2009年第5期434-437,共4页
Journal of Shandong Jianzhu University
关键词
重心有理插值配点法
矩形板
自由振动
微分方程
barycentric rational interpolation collocation method
rectangular plates
free vibrations
differential equation