期刊文献+

K-means算法在隐语义模型中的应用 被引量:1

Application of K-means Algorithm in Latent Factor Model
下载PDF
导出
摘要 隐语义模型(LFM)是文本挖掘领域的重要模型,将它应用于推荐系统的评分预测具有预测精度高和占用内存小的优点。但由于时间开销较大,LFM模型并不适合用于处理大规模稀疏矩阵。针对此问题,论文将K-means算法引入到LFM模型的评分数据处理,得到改进模型K-LFM。在K-LFM模型中,利用K-means算法对评分矩阵中的用户和项目数据进行聚类处理,然后重构评分矩阵降低原始矩阵的稀疏程度和矩阵规模,最后用重构后的评分矩阵训练模型,预测评分。通过在movielens数据集上实验发现K-LFM模型在运行时间上较LFM模型有大幅降低,而预测精度没有受到明显影响。 Latent Factor Model(LFM)is an important model widely used in text mining.It has the advantage of high precision and low memory cost in rating prediction.However LFM model is not suitable for processing large-scale sparse matrix.In order to improve the performance,K-means algorithm is introduced to deal with rating data into LFM.This new model is called K-LFM.First of all,K-means is used to classify user and item information in K-LFM.And then the rating matrices are refactored to reduce the scale and sparse degree of orignal matrix.Finally training model with refactoring matix,can get predict rating.The experiment on public data set movielens shows that K-LFM model is superior to LFM model on processing efficiency.Besides,the prediction accuracy isn't significantly affected.
出处 《计算机与数字工程》 2016年第4期572-574,609,共4页 Computer & Digital Engineering
基金 贵州省科学技术基金项目(编号:黔科合J字[2010]2100号) 贵州大学引进人才科研项目(编号:贵大人基合字(2009)029号)资助
关键词 隐语义模型 K-MEANS算法 评分矩阵 K-LFM latent factor model K-means algorithm rating matrix K-LFM
  • 相关文献

参考文献10

  • 1Billsus D,Pazzani M J. Learning collaborative informa-tion filter [ C] //Proceeding of International Conferenceon Machine Learning, San Francisco,1998:48-55. 被引量:1
  • 2Paterek A. Improving regularized singular value de-composition for collaborative filtering[C]//Proceedingsof KDD Cup and Workshop, California,2007: 39-42. 被引量:1
  • 3方耀宁,郭云飞,兰巨龙.基于Logistic函数的贝叶斯概率矩阵分解算法[J].电子与信息学报,2014,36(3):715-720. 被引量:9
  • 4Koren Y. Factorization meets the neighborhood : a mul-tifaceted collaborative filtering mode[C]//Proceedingsof the 14th ACM SIGKDD International Conference onKnowledge Discovery and Data Mining, New York,2008:426-434. 被引量:1
  • 5Jian Cheng. Group latent factor model for recommenda-tion with multiple user behaviors[J].ACM July,2014. 被引量:1
  • 6张玉芳,毛嘉莉,熊忠阳.一种改进的K-means算法[J].计算机应用,2003,23(8):31-33. 被引量:73
  • 7鲁权,王如龙,张锦,丁怡.融合邻域模型与隐语义模型的推荐算法[J].计算机工程与应用,2013,49(19):100-103. 被引量:14
  • 8项亮编著..推荐系统实践[M].北京:人民邮电出版社,2012:197.
  • 9Rong Pan, Martin Scholz. Mind the Gaps: Weightingthe unknown in Large-Scale One-Class CollaborativeFiltering[C]//KDD’09,New York,2009: 65-68. 被引量:1
  • 10Quanquan GU,Jie Zhou. Co-Clustering on Manifolds[C]//KDD’09,New York,2009:269-274. 被引量:1

二级参考文献30

  • 1(加)HanJ KamberM 范明 盂小峰 等译.数据挖掘概念与技术m[M].北京:机械工业出版社,2001.223-262. 被引量:1
  • 2..http://lib, slat. Cmu. Edu/datasets/places. Data,. 被引量:1
  • 3Forgy E. Cluster analysis of multivariate data: Efficiency vs. interpretabillty of classifications[ M]. Biometrics, 1965, 21(3) : 768. 被引量:1
  • 4MacQueen J. Some methods for classlfication and analysis of multivariate observations[ A]. Proceedinss of the Fifth Berkeley Symposium on Mathematical Statistics and Probability[ C]. Volume 1. Le-Cam LM, Neyman N, Ed. University of California Press, 1967. 被引量:1
  • 5Duda RO, Hart PE. Pattern Classification and Scene Analysis[ M].New York: John Wiley and Sons, 1973. 被引量:1
  • 6Selim SZ, Alsultan K. A Simulated Annealing Algorithm for the Clustering Problem[J]. Pattern Recognition, 1991, 24(10): 1003- 1008. 被引量:1
  • 7Fayyad U, Reina C, Bradley PS. Initialization of Iterative Refinement Clustering Algorithms[ R]. Microsoft Research Technical Report MSR-TR-98-38, June 1998. 被引量:1
  • 8Selim SZ, Ismail MA. K-Means-Type Algorithms: A Generalized Convergence Theorem and Charadterization of Local Optimality[ M].IEEE Trans Pattern Analysis and Machine Intelligence, 1984, PA-MI-6(1). 被引量:1
  • 9Kaufman L, Rouseeuw P. Finding Groups in Data: An Introduction to Cluster Analysis[ M]. New York : John Wiley and Sons, 1990. 被引量:1
  • 10Alsabti K, Ranks S, Singh V. An Efficient K-Means Clustering Algorithm[ A]. Proc. First Workshop on High-Performance Data Mining[C], 1997. 被引量:1

共引文献93

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部