期刊文献+

K_m^-□P_n的交叉数 被引量:2

The Crossing Number of K_m^-□P_n
原文传递
导出
摘要 Klesc等人先后确定了K_m^-□P_n(4≤m≤6)的交叉数,本文利用构造法确定了K_m-2K_2(4≤m≤12,m≠10,12)的交叉数.在此基础上,可进一步确定K_m^-□P_n(4≤m≤9,m≠8)的交叉数.相比而言,我们所采用的方法更具一般性. The crossing numbers of Km口Pn were successively determined for 4≤ m ≤ 6 by Klesc et al. In this paper, the crossing numbers of Km - 2K2 are obtained by the construction method for 4 ≤ m ≤ 12 and m ≠ 10, 12. On the basis, the crossing numbers of Km口Pn for 4 ≤ m ≤ 9 and m ≠ 8 can be determined. The method that we use is more general relatively.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第3期405-410,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11301169,11371133) 湖南省自然科学基金资助项目(13JJ4110) 湖南省优秀博士学位论文获得者资助项目(YB2013B040) 省高校科技创新团队支持计划项目
关键词 画法 交叉数 笛卡尔积 graph drawing crossing number Cartesian product
  • 相关文献

参考文献9

  • 1Bondy J. A., Murty U. S. R., Graph Theory with Applications, Macmillan Press Ltd, London, 1976. 被引量:1
  • 2Bokal D., On the crossing number of Cartesian products with paths, J. Combin. Theory Series B, 2007, 97: 381-384. 被引量:1
  • 3Erdas P., Guy R. K., Crossing number problems, Amer. Math. Mon., 1973, 80:52- 58. 被引量:1
  • 4Garey M. R., Johnson D. S., Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods, 1983, 4: 312-316. 被引量:1
  • 5Klesc M., The crossing numbers of products of paths and stars with 4-vertex graphs, J. Graph. Theory, 1994, 18: 605-614. 被引量:1
  • 6Klesc M., The crossing numbers of Cartesian products of paths with 5-vertex graphs, Discrete Math., 2001, 233: 353-359. 被引量:1
  • 7Ouyang Z. D., Wang J., Huang Y. Q., On the crossing number of K1,1,m□Pn (in Chinese), Scientia Sinica Math., 2014, 44(12): 1337-1342. 被引量:1
  • 8Ouyang Z. D., Wang J., Huang Y. Q., The crossing number of Cartesian product of paths with complete graphs, Discrete Math., 2014, 828:71 -78. 被引量:1
  • 9Yang X. W., The Crossing Number of Flower Snark and KmDPn (in Chinese), Master Thesis, Dalian University of Technology, Dalian, 2007. 被引量:1

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部