期刊文献+

基于状态预测的无人机导航控制 被引量:1

Navigation control for UAV based on state prediction
下载PDF
导出
摘要 基于飞行惯性对无人机路径导航实时控制和控制精度的影响,将灰色预测模型与模糊PID控制进行融合,提出了基于无人机飞行状态预测的导航控制策略.将无人机飞行状态预测信息作为系统状态调节的输入,构建灰色预测模糊PID航向控制系统,达到对无人机进行实时、准确导航飞行控制的目的.仿真实验结果表明:灰色预测模糊PID控制器可以有效提高无人机导航控制系统的鲁棒性、实时性,与传统的PID控制器相比,其控制性能更优. In view of the effect of UAV's momentum on its real-time and accuracy of path navigation control,a navigation control strategy was presented based on the flight state prediction of UAV,in which the grey prediction and fuzzy PID control were combined.Gray prediction-fuzzy PID was used for constructing a heading control system of UAV of which the predicted flight state of UAV was inputted into the heading control system for regulating its state,so as to achieve a real-time,accurate navigation and flight control to the UAV.The simulation results show that the gray prediction-fuzzy PID control can improve effectively the robustness and realtime performance of UAV navigation control system,and its control performance is better than the traditional PID controller.
出处 《山东理工大学学报(自然科学版)》 CAS 2016年第4期5-10,共6页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金项目(61573009)
关键词 灰色预测 模糊PID 无人机 航向控制 grey prediction fuzzy PID control UAV navigation control
  • 相关文献

参考文献11

  • 1王富贵..小型高速无人机横侧向控制律设计与研究[D].南京航空航天大学,2012:
  • 2段镇..无人机飞行控制系统若干关键技术研究[D].中国科学院大学,2014:
  • 3Kurnaz S, Cetin O, Kaynak O. Fuzzy logic based approach to design of flight control and navigation tasks for autonomous un- manned aerial vehicles [J]. Journal of Intelligent and Robotic Systems, 2009, 54(1-3): 229-244. 被引量:1
  • 4Topalov A, Shakev N, Nikolova S, et al. Trajectory control of unmanned aerial vehicle using neural nets with a stable learning algorithm[C]//Control and Automation, 2009. 17th Mediterra- nean Conference on. IEEE, 2009: 880-885. 被引量:1
  • 5刘红军,韩璞,王东风,甄成刚.灰色预测模糊PID控制在汽温控制系统中的应用[J].系统仿真学报,2004,16(8):1839-1841. 被引量:26
  • 6Savran A. A multivariable predictive fuzzy PID control system [J]. Applied Soft Computing, 2013, 13(5).. 2 658-2 667. 被引量:1
  • 7Lu J, Chen G, Ying H. Predictive fuzzy PID control: theory, design and simulation[J]. Information Sciences, 2001, 137 (1) 157-187. 被引量:1
  • 8梁宵,王宏伦,曹梦磊,郭腾飞.无人机复杂环境中跟踪运动目标的实时航路规划[J].北京航空航天大学学报,2012,38(9):1129-1133. 被引量:12
  • 9云超,李小民,郑宗贵,刘品.中小型无人机建模分析与仿真研究[J].计算机仿真,2013,30(11):32-35. 被引量:9
  • 10徐文忠..某型无人机实时仿真系统设计与研究[D].南京航空航天大学,2010:

二级参考文献19

  • 1耿通奋,黄一敏.小型无人机实时仿真系统研究[J].计算机仿真,2004,21(9):31-33. 被引量:6
  • 2张纯刚,席裕庚.Sub-optimality analysis of mobile robot rolling path planning[J].Science in China(Series F),2003,46(2):116-125. 被引量:1
  • 3吕剑虹,陈来九.模糊PID控制器及在汽温控制系统中的应用研究[J].中国电机工程学报,1995,15(1):16-22. 被引量:57
  • 4邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1993.. 被引量:60
  • 5Katsushi Mitsutake, Shin-Ichiro Higashino. An A·-EC hybrid path planning method for waypoint traveling problem considering terrain [ R ]. AIAA-2008-7133,2008. 被引量:1
  • 6Amin J N, Boskovic J D, Mehra R K. A fast and efficient ap- proach to path planning for unmanned vehicles [ R ]. AIAA- 2006-6103,2006. 被引量:1
  • 7Nielsen C L,Kavraki L E. A two level fuzzy PRM for manipula- tion planning [ C ]//Proceedings of the 2000 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Takamatsu :IEEE,2000 : 1716 - 1721. 被引量:1
  • 8Wang N, Gu X Q, Chen J,et al. A hybrid neural network method for UAV attack route integrated planning [ J]. Advances in Neu- ral Networks ,2009,5553:226 - 235. 被引量:1
  • 9Sullivan J, Waydo S, Campbell M. Using stream functions for complex behavior and path generation [ R ]. AIAA-2003-5800, 2003. 被引量:1
  • 10Waydo S, Murray R M. Vehicle motion planning using stream functions [ C ]//Proceedings of the 2003 IEEE International Conference on Robotics and Automation. Taipei: IEEE, 2003 : 2484 - 2491. 被引量:1

共引文献44

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部