期刊文献+

核矩阵协同进化的震荡搜索粒子群优化算法 被引量:7

Shock search particle swarm optimization algorithm based on kernel matrix synergistic evolution
下载PDF
导出
摘要 针对粒子群算法搜索后期易陷入局部极值的缺点,提出一种基于核矩阵协同进化的震荡搜索粒子群优化(kenel matrix synergistic evolution shock search particle swarm optimization,KMSESPSO)算法,该算法对粒子进行局部与全局结合的震荡搜索,且当整个粒子种群陷入停滞状态时,利用核矩阵对特定粒子组进行协同进化以扩大种群的多样性。实验结果表明,KMSESPSO算法有效提高了粒子的全局搜索能力,既避免粒子种群易早熟收敛,又较好地提高寻优精度、加快收敛速度,且有一定的鲁棒性。 Due to the shortcoming of particle swarm optimization( PSO) algorithm that it is often trapping in local optimum at the late stage,a kind of shock search PSO algorithm based on kernal matrix synergistic evolution( KMSESPSO) is proposed. The proposed algorithm does a combination of local and global shocks search and when the whole particle swarm is stagnant a specific particle group would have a synergistic evolution to enrich the diversity of population by using kernel matrix. The experiment results show that the proposed algorithm strengthens the global search capability of particles effectively and can not only get free from premature but also raise the optimal accuracy in faster convergence speed and have certain robustness.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第2期247-253,共7页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家863计划项目(2013AA040405)~~
关键词 粒子群优化算法 震荡搜索 核矩阵 协同进化 particle swarm optimization shock search kernel matrix synergistic evolution
  • 相关文献

参考文献11

二级参考文献80

  • 1张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 2雷德明,吴智铭.Pareto档案多目标粒子群优化[J].模式识别与人工智能,2006,19(4):475-480. 被引量:25
  • 3龙海侠,须文波,孙俊.基于QPSO的数据聚类[J].计算机应用研究,2006,23(12):40-42. 被引量:14
  • 4周急流.[D].成都:四川大学,2000. 被引量:1
  • 5Kennedy J, Eberhert R. Particle swarm optimization[C]. IEEE Int Conf on Neural Networks. Perth, 1995: 1942- 1948. 被引量:1
  • 6Shi Y, Eberhert R. Empirical study of particle swarm optimization[C]. Int Conf on Evolutionary Computation. Washington: IEEE, 1999: 1945-1950. 被引量:1
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 8Carmelo J, Bastos-Filho A, Marcel P Caraciolo, et al. Multi-ring dispersed particle swarm optimization[C]. Eighth Int Conf on Hybrid Intelligent Systems. Barcelona, 2008: 25-30. 被引量:1
  • 9Leandro dos Santos Coelho. A quantum particle swarm optimizer with chaotic mutation operator[J]. Chaos, Solitons and Fractals, 2008, 37(5): 1409-1418. 被引量:1
  • 10Chen D B, Zhao C X. Particle swarm optimization with adaptive population size and its application[J]. Applied Soft Computing, 2009, 9(1): 39-48. 被引量:1

共引文献384

同被引文献53

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部