摘要
为了改进进化策略算法的性能,提出了一种混沌协方差矩阵自适应进化策略(ChaosCMA-ES)算法,该算法在协方差矩阵自适应进化策略(CMA-ES)算法的基础上引入了混沌算子,并利用其更新种群中心的位置,使得种群具备良好的全局搜索能力。试验结果表明,本文算法对复杂多峰函数的寻优效果好于其他几种算法。最后,将本文算法用于优化网络安全态势的预测模型,预测结果的精度高于其他方法。
A Chaos Covariance Matrix Adaptation Evolution Strategy (Chaos-CMA-ES ) optimization algorithm is proposed. The Chaos-CMA-ES algorithm uses the chaos operator to update the mean of the population on the basis of the original CMA-ES algorithm. Chaos-CMA-ES algorithm has good global search capability by using the improved operation. The comparative experimental results verify that the Chaos-CMA-ES algorithm has better optimization effect than other optimization algorithms for complex multimodal function. A case study of the network security situation prediction is examined to demonstrate the ability and applicability of the Chaos-CMA-ES algorithm. The prediction accuracy is higher than other methods.
作者
胡冠宇
乔佩利
HU Guan-yu QIAO Pei-li(School of Computer Science and Technology ^ Harbin University of Science and Technology ^ Har6in 150080 , China)
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2017年第3期937-943,共7页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金项目(61103149
61362016)
黑龙江省自然科学基金项目(QC2013C060)
关键词
人工智能
优化算法
协方差矩阵自适应进化策略
混沌优化
网络安全态势预测
artificial intelligence
optimization algorithm
covariance matrix adaptation evolution strategy(CMA-ES)
chaos optimization
network security situation prediction