期刊文献+

基于Huber的高阶容积卡尔曼跟踪算法 被引量:18

Huber-based high-degree cubature Kalman tracking algorithm
下载PDF
导出
摘要 为改善高阶容积卡尔曼滤波算法的滤波精度和鲁棒性,提出了一种新的基于Huber的高阶容积卡尔曼滤波算法.在采用统计线性回归模型近似非线性量测模型的基础上,利用Huber M估计算法实现状态的量测更新.进一步结合高阶球面-径向容积准则的状态预测模块构成基于Huber的高阶容积卡尔曼跟踪算法.重点分析了Huber代价函数的调节因子对算法跟踪性能的影响.通过对纯方位目标跟踪和再入飞行器跟踪两个实例验证了所提算法的跟踪性能优于传统高阶容积卡尔曼滤波算法. In recent decades, nonlinear Kalman filtering based on Bayesian theory has been intensively studied to solve the problem of state estimation in nonlinear dynamical system. Under the Gaussian assumption, Bayesian filtering can provide a unified recursive solution to the estimation problem that is described as the calculation of Gaussian weighted integrals. However it is typically intractable to directly calculate these integrals. The numerical integration methods are required from a practical perspective. Therefore, nonlinear Kalman filters are generated by different numerical integrations. As a representative of nonlinear Kalman filter, cubature Kalman filter(CKF) utilizes a numerical rule based on the third-degree spherical-radial cubature rule to obtain better numerical stability, which is widely used in many fields, e.g., positioning, attitude estimation, and communication. Target tracking can be generalized as the estimations of the target position, the target velocity and other parameters. Hence, nonlinear Kalman filters can also be used to perform target tracking, effectively. Since the CKF based on the third-degree cubature rule has a limited accuracy of estimation, it is necessary to find a CKF based a cubature rule with higher accuracy in the case of target tracking system with a large uncertainty. High-degree cubature Kalman filter is therefore proposed to implement state estimation due to its higher numerical accuracy, which is preferred to solve the estimation problem existing in target tracking. To improve the filtering accuracy and robustness of high-degree cubature Kalman filter, in this paper we present a new filtering algorithm named Huber-based high-degree cubature Kalman filter(HHCKF) algorithm. After approximating nonlinear measurements by using the statistical linear regression model, the measurement update is implemented by the Huber M estimation. As a mixed estimation technique based on the minimum of l1-norm and l2-norm, the Huber estimator has high robustness and numerical accurac
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第8期354-362,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61101232) 重庆市基础与前沿研究计划(批准号:cstc2014jcyj A40020) 中央高校基本科研业务费重点项目(批准号:XDJK2014B001)资助的课题~~
关键词 Huber方法 容积卡尔曼滤波器 目标跟踪 滤波精度 Huber method cubature Kalman filter target tracking filter accuracy
  • 相关文献

参考文献29

二级参考文献12

  • 1Candy J. Bayesian signal processing[M]. New Jersey: John Wiley & Sons, 2009. 被引量:1
  • 2Juliet S J, Uhlrnann J K. A new extension of the Kalman filter to nonlinear systems[C]//Proc SPIE- Int Soc Opt Eng. Orlando: SPIE, 1997:182-193. 被引量:1
  • 3Van der Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models [D]. Portland, USA: OGI School of Sci & Eng, Oregon Health & Sci Univ, 2004. 被引量:1
  • 4Lefebvre T, Bruyninckx H, de Schutter J. Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [J]. IEEE Transactions on Automatic Control, 2002, 47(8):1406-1409. 被引量:1
  • 5Box G E P. Non-normality and tests on variances [J]. Biometrika, 1953, 40 (3): 318-335. 被引量:1
  • 6Hampel F R, Roussseeuw P J, Ronchetti E W A. Robust statistics: The approach based on influence functions[M]. New York : Wiley, 1986. 被引量:1
  • 7Huber P J. Robust estimation of a location parameter[J]. Annals of Mathematical Statistics, 1964, 35 (2) : 73-101. 被引量:1
  • 8Karlgaard C D, Schaub H. Huber-based divided difference filtering [J]. Journal of Guidance, Control, and Dynamics,2007, 30(3): 885-891. 被引量:1
  • 9Wang X, Cui N, Guo J. Huber-based unscented filtering and its application to vision-based relative navigation[J].IET Radar, Sonar, Navigation, 2010, 4 (1): 134-141. 被引量:1
  • 10Maronna R A, Martin R D, Yohai V J. Robust statistic: theory and methods[M]. England: Wiley, West Sussex, 2006. 被引量:1

共引文献18

同被引文献86

引证文献18

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部