期刊文献+

基于LBI的二维复稀疏信号重建算法及应用研究 被引量:2

2D Complex Sparse Reconstruction Algorithm with LBI and Its Application
下载PDF
导出
摘要 针对二维复稀疏信号重建时存在存储空间和计算复杂度增加的问题,本文提出了一种快速并行重建二维复稀疏信号的并行线性Bregman迭代(Parallel fast linearized Bregman iteration,PFLBI)算法.首先,构建了二维复稀疏信号的结构模型以及PFLBI算法基本迭代格式;其次,通过变步长方式提高迭代收敛速度,而每次迭代的步长则是通过估计中间变量的积累量突破收缩阈值需要的积累步数得到的;再次,对算法的性能指标进行了分析;最后,将该算法应用于逆合成孔径雷达(Inverse synthetic aperture radar,ISAR)成像.实验结果表明该算法在重建性能和速度上具有优势. A parallel fast linearized Bregman iteration(PFLBI) algorithm is proposed to solve the problem of large storage and complex computation in the reconstruction of 2D sparse signal. The PFLBI algorithm can efficiently reconstruct2 D sparse signal in a parallel way. Firstly, the matrix form of linearized Bregman iteration(LBI) is constructed. Secondly,the convergence speed is improved by estimating the number of the steps for intermediate variables to cross the shrinkage threshold. Thirdly, the performance of the proposed algorithm is analyzed. Finally, PFLBI is applied to inverse synthetic aperture radar(ISAR) imaging. Experimental results show that the proposed algorithm can improve the performance and the speed of reconstruction.
机构地区 空军预警学院
出处 《自动化学报》 EI CSCD 北大核心 2016年第4期556-565,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61179014)资助~~
关键词 稀疏重建 二维信号处理 线性Bregman迭代 ISAR成像 Sparse reconstruction 2D signal processing linearized Bregman iteration(LBI) inverse synthetic aperture radar(ISAR) imaging
  • 相关文献

参考文献6

二级参考文献180

  • 1杨军,王民胜,保铮.一种ISAR多目标实时成像方法[J].电子学报,1995,23(4):1-5. 被引量:8
  • 2沈显祥,叶瑞青,唐斌,杨建宇.基于欠采样的宽带线性调频信号参数估计[J].电波科学学报,2007,22(1):43-46. 被引量:17
  • 3Cand4s E J. The restricted isometry property and its impli- cations for compressed sensing. Comptes Rendus Mathema- tique, 2008, 346(9-10): 589-592. 被引量:1
  • 4Donoho D L. Compressed sensing. IEEE Transactions on In[ormation Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 5Cand@s E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory 2006, 52(12): 5406- 5425. 被引量:1
  • 6Cand6s E J, Romberg J, Tao T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete fourier information. IEEE Transactions on Information The- ory, 2006, 52(2): 489-509. 被引量:1
  • 7Blanchard J, Tanner J. Gpu accelerated greedy algorithms for compressed sensing. Mathematical Programming Com- putation, 2013, 5(3): 267-304. 被引量:1
  • 8Jafarpour S, Xu W, Hassibi B, Calderbank R. Efficient and robust compressed sensing using optimized expander graphs. IEEE Transactions on Information Theory, 2009, 55(9): 4299-4308. 被引量:1
  • 9Xu W, Hassibi B. Efficient compressed sensing with deter- ministic guarantees using expander graphs. In: Proceed- ings of the 2007 IEEE Information Theory Workshop. Lake Tahoe, USA: IEEE, 2007. 414-419. 被引量:1
  • 10Xu W, Hassibi B. rther results on performance analysis for compressive sensing using expander graphs. In: Proceed- ings of the 41st Asilomar Conference on Signals Systems and Computers. Pacific Grove, USA: IEEE, 2007. 621-625. 被引量:1

共引文献68

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部