期刊文献+

基于e^0范数优化算法的图像重建

Image Reconstruction Based On e^0 Norm Optimization Algorithm
下载PDF
导出
摘要 为了解决稀疏信号的重建问题提出了光滑e0范数优化算法,它与最小1范数优化算法等图像重建的方法相比有很大的不同,着重实验了这种信号重建算法中重要参数的选择,并利用手写体数字图像库为试验样本做了一维信号重建和二维图像重建实验.实验结果证明了基于e0范数优化算法在图像重建时间和重建精度上的优越性,此为后续的图像工程研究奠定了基础. In order to solve the problem of sparse signal reconstruction, this paper proposes a smooth norm optimization algorithm,which is different from the minimum 1 norm optimization algorithm. This paper mainly studies the choice of important parameters in this signal reconstruction algorithm. Taking the handwritten digital image hbraly of the United States Postal Service(USPS) as test samples, we make one-dimensional signal reconstruction and two-dimensional image reconstruction experiments. The experimental results show the advantage of the norm algorithm in image reconstruction precision and reconstruction time, which lays the theoretical foundation for subsequent research on image engineering.
出处 《成都大学学报(自然科学版)》 2014年第2期141-144,共4页 Journal of Chengdu University(Natural Science Edition)
关键词 压缩感知 图像重建 稀疏信号重建 e^0范数优化 compressed sensing image reconstruction sparse signal reconstruction eo norm optimization
  • 相关文献

参考文献7

  • 1Mallat S,Zhang Z. Matching pursuits with time-frequency dictio- naries [J]. IEEE Transaction on Signal Processing, 1993, 41 (12) :3397 - 3415. 被引量:1
  • 2Donoho D L. Compressed sensing[ J ]. IEEE Transactions on In-formation Theory,2006,52(4) : 1025 - 1204. 被引量:1
  • 3李志林,陈后金,姚畅,李居朋.基于谱投影梯度追踪的压缩感知重建算法[J].自动化学报,2012,38(7):1218-1223. 被引量:11
  • 4Donoho D L. For most large underdetermined systems of linear equations the minimal e1-norm solution is also the sparsest solu- tion[ J]. Communications on pure and applied mathematics, 2006,59(6) :797 - 829. 被引量:1
  • 5Candes E, Romberg J.l1-mag/c: recovery of sparse signals via convex programming [ EB/OL]. http://www, acm. caltech. Edu/ 11 magic/downloads/11 magic, pdf. 被引量:1
  • 6代少升,肖菡.基于修正的拟牛顿法的基追踪去噪研究[J].重庆邮电大学学报(自然科学版),2010,22(6):729-733. 被引量:2
  • 7Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [ J ]. IEEF. Transactions on Information Theory, 2006,52(1) : 6 - 18. 被引量:1

二级参考文献36

  • 1汪雄良,王春玲.基于改进基追踪方法的信号去噪[J].电子技术应用,2005,31(8):19-21. 被引量:3
  • 2徐鹏,尧德中,陈华富.基于BFGS优化的l_p模约束稀疏分解去噪方法[J].计算机工程与应用,2005,41(30):16-17. 被引量:1
  • 3CHEN S S, DONOHO D L, SAUNDERS M A. Atomic Decomposition by Basis Pursuit [ J]. SIAM J Sei Comp, 1999,20( 1 ) :33-610. 被引量:1
  • 4MALLAT S, ZHANG Z. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Signal Proc, 1993,41 (12) :3397-3415. 被引量:1
  • 5PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: Recursive function approxima- tion with applications to wavelet decomposition[ EB/OL]. [2010-03-10 ]. http://citeseerx. ist. psu. edu/viewdoc/ download? doi = 10.1.1.55. 1254 & rep = rep/type- pdf. 被引量:1
  • 6GORODNITSKY I, RAO B. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[J]. IEEE Trans Signal Processing, 1997,45 (3) :600-616. 被引量:1
  • 7ZHAOXiao-hui ZHAOYue.An Adaptive Acoustic Echo Cancellation Algorithm Based on Sub-band Decomposition and Conjugate Gradient Method .The Journal of China Universities of Posts and Telecommunications(中国邮电高校学报:英文版),2005,12(3):75-78. 被引量:1
  • 8Candes E, Romberg J, Tao T. Robust uncertainty princi- ples: exact signal reconstruction from highly incomplete fre- quency information. IEEE Transactions on Information The- ory, 2006, 52(2): 489-509. 被引量:1
  • 9Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 10Mallat S G, Zhang Z F. Matching pursuits with time- frequency dictionaries. IEEE Transactions on Signal Process- ing, 1993, 41(12): 3397-3415. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部