期刊文献+

基于包含与演绎分析的无冗余序列规则挖掘

NON-REDUNDANT SEQUENCE RULES MINING BASED ON INCLUSION AND DEDUCTION ANALYSIS
下载PDF
导出
摘要 序列规则挖掘旨在发现频繁序列之间的因果关联,当前最优的序列规则产生方法仅考虑两规则间的包含关系而没有考虑多规则间的演绎关系,故而存在大量冗余。引入演绎无冗余规则的概念,分析演绎冗余的原因,重新定义了无冗余规则的概念。在频繁闭序列及其生成子的基础上,基于最大重叠项冗余性检查给出了无冗余规则抽取算法。理论分析和实验评估表明该算法在处理效率基本不变的前提下,提高了序列规则的生成质量。 Sequence rule mining aims at finding the casual association between frequent sequences,current best sequence rules generation approach just considers the inclusion relationship between two rules but does not consider the deduction relationship among multi rules,therefore has lots redundancies. We introduce the concept of deductive non-redundant rules and analyse the reasons for deductive redundancy,as well as redefine the concept of non-redundant rules. We also present the non-redundant sequence rules extraction algorithm based on the maximum overlap term redundancy checking on the basis of frequent closed sequence and its generator. Theoretical analysis and experimental assessment demonstrate that this algorithm improves the generation quality of sequence rules with almost the same efficiency.
出处 《计算机应用与软件》 CSCD 2016年第3期52-55,66,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61303225)
关键词 事件 序列规则 包含 演绎 无冗余 Event Sequence rule Inclusion Deduction Non-redundant
  • 相关文献

参考文献9

  • 1Thiet P T H I.基于前缀树结构的序列模式挖掘算法研究[D].湖南大学,2013. 被引量:1
  • 2Sarawagi S,Thomas S,Agrawal R.Integrating association rule mining with relational database systems:Alternatives and implications[C]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data,1998:343-354. 被引量:1
  • 3朱辉生,汪卫,施伯乐.基于频繁闭情节及其生成子的无冗余情节规则抽取[J].计算机学报,2012,35(1):53-64. 被引量:7
  • 4Hatonen K,Klemettinen M,Mannila H,et al.Knowledge discovery from telecommunication network alarm databases[C]//Proceedings of the12th IEEE International Conference on Data Engineering.New Orleans,Louisiana,1996:115-122. 被引量:1
  • 5Meger N,Rigotti C.Constraint based mining of episode rules and optimal window sizes[C]//Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases.Pisa,Italy,2004:313-324. 被引量:1
  • 6Lo D,Khoo S C,Li J.Mining and Ranking Generators of Sequential Patterns[C]//SDM,2008:553-564. 被引量:1
  • 7Van Der Aalst W.Process mining:Overview and opportunities[J].ACM Transactions on Management Information Systems(TMIS),2012,3(2):7. 被引量:1
  • 8Sarawagi S,Thomas S,Agrawal R.Integrating association rule mining with relational database systems:Alternatives and implications[C]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data,1998:343-354. 被引量:1
  • 9王树文,张永伟,郭全中.加快推进中国烟草行业改革研究[J].中国工业经济,2005(2):5-13. 被引量:28

二级参考文献22

  • 1Mannila H, Toivonen H, Verkamo A I. Discovering fre- quent episodes in sequences//Proceedings of the 1st ACM SIGKDD Conference on Knowledge Discovery and Data Min- ing. Montreal, Canada, 1995:210-215. 被引量:1
  • 2Hatonen K, Klemettinen M, Mannila H, Ronkainen P, Toivonen H. Knowledge discovery from telecommunication network alarm databases//Proceedings of the 12th IEEE In- ternational Conference on Data Engineering. New Orleans, Louisiana, 1996: 115-122. 被引量:1
  • 3Meger N, Rigotti C. Constraint based mining of episode rules and optimal window sizes//Proceedings of the 8th Eu- ropean Conference on Principles and Practice of Knowledge Discovery in Databases. Pisa, Italy, 2004:313-324. 被引量:1
  • 4Patnaik D, Marwah M, Sharma R, Ramakrishnan N. Sus- tainable operation and management of data center chillers using temporal data mining//Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:1305-1313. 被引量:1
  • 5Hwang K, Cai M, Chen Y, Qin M. Hybrid intrusion detec- tion with weighted signature generation over anomalous in- ternet episodes. IEEE Transactions on Dependable and Secure Computing, 2007, 4(1): 41-55. 被引量:1
  • 6Ng A, Fu A. Mining frequent episodes for relating financial events and stock trends//Proceedings of the 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Seoul, Korea, 2003:27-39. 被引量:1
  • 7Lo D, Khoo S, Liu C. Efficient mining of recurrent rules from a sequence database//Proceedings of the 13th Interna- tional Conference on Database Systems for Advanced Appli- cations. New Delhi, India, 2008:67-83. 被引量:1
  • 8Wang P, Wang H, Liu M, Wang W. An algorithmic approach to event summarization//Proceedings of the ACM SIGMOD International Conferenee on Management of Data. Indianapolis, Indiana, USA, 2010:183-194. 被引量:1
  • 9Pasquier N, Bastide Y, Taouil R, Lakhal L. Discoving fre- quent closed itemsets for association rules//Proceedings of the 7th International Conference on Database Theory. Jerusalem, Israel, 1999:398-416. 被引量:1
  • 10Bastide Y, Taouil R, Pasquier N, Stumme G, Lakhal L. Mining frequent patterns with counting inference. SIGKDD Explorations, 2000, 2(2): 66-75. 被引量:1

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部