期刊文献+

广义无冗余情节规则抽取方法研究 被引量:1

Research on Extracting Generalized Non-Redundant Episode Rules
下载PDF
导出
摘要 情节规则挖掘旨在发现频繁情节之间的因果关联,现有无损情节规则挖掘方法没有考虑多规则间的关联关系,故而存在大量冗余.利用演绎推导特性对情节规则间的关联关系进行建模,引入无冗余情节迹规则的概念,分析了情节迹冗余的原因,通过最大重叠项冗余性检查给出广义无冗余情节规则抽取算法;证明了广义无冗余情节规则对情节规则的等价表达能力.理论分析和实验评估表明该算法在处理效率基本不变的前提下,提高了情节规则的生成质量. Aiming at the problem that current nondestructive episode rule mining algorithms don't consider the relationship between episode rules and generate redundancy,we model the relationship among the episode rules by using deduction characteristic,and introduce the concept of non-redundant episode trace rules. We also analyze reasons for episode trace redundancy,and present the generalized non-redundant episode rules mining algorithm based on the redundant checking on maximum overlap items. Then we prove that generalized non-redundant episode rules keep the equivalent expression ability to episode rules. Theoretical analysis and experiments demonstrate this algorithm improved the quality of generatedepisode rules with almost the same efficiency.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第2期269-275,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61303225) 航空科学基金(No.20135553034) 中央高校基本科研业务费专项资金(No.3102014JSJ0008)
关键词 事件序列 演绎 情节迹 最大重叠项 情节规则 event sequence deduction episode trace maximum overlap items episode rule
  • 相关文献

参考文献1

二级参考文献15

  • 1Mannila H, Toivonen H, Verkamo A I. Discovering fre- quent episodes in sequences//Proceedings of the 1st ACM SIGKDD Conference on Knowledge Discovery and Data Min- ing. Montreal, Canada, 1995:210-215. 被引量:1
  • 2Hatonen K, Klemettinen M, Mannila H, Ronkainen P, Toivonen H. Knowledge discovery from telecommunication network alarm databases//Proceedings of the 12th IEEE In- ternational Conference on Data Engineering. New Orleans, Louisiana, 1996: 115-122. 被引量:1
  • 3Meger N, Rigotti C. Constraint based mining of episode rules and optimal window sizes//Proceedings of the 8th Eu- ropean Conference on Principles and Practice of Knowledge Discovery in Databases. Pisa, Italy, 2004:313-324. 被引量:1
  • 4Patnaik D, Marwah M, Sharma R, Ramakrishnan N. Sus- tainable operation and management of data center chillers using temporal data mining//Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:1305-1313. 被引量:1
  • 5Hwang K, Cai M, Chen Y, Qin M. Hybrid intrusion detec- tion with weighted signature generation over anomalous in- ternet episodes. IEEE Transactions on Dependable and Secure Computing, 2007, 4(1): 41-55. 被引量:1
  • 6Ng A, Fu A. Mining frequent episodes for relating financial events and stock trends//Proceedings of the 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Seoul, Korea, 2003:27-39. 被引量:1
  • 7Lo D, Khoo S, Liu C. Efficient mining of recurrent rules from a sequence database//Proceedings of the 13th Interna- tional Conference on Database Systems for Advanced Appli- cations. New Delhi, India, 2008:67-83. 被引量:1
  • 8Wang P, Wang H, Liu M, Wang W. An algorithmic approach to event summarization//Proceedings of the ACM SIGMOD International Conferenee on Management of Data. Indianapolis, Indiana, USA, 2010:183-194. 被引量:1
  • 9Pasquier N, Bastide Y, Taouil R, Lakhal L. Discoving fre- quent closed itemsets for association rules//Proceedings of the 7th International Conference on Database Theory. Jerusalem, Israel, 1999:398-416. 被引量:1
  • 10Bastide Y, Taouil R, Pasquier N, Stumme G, Lakhal L. Mining frequent patterns with counting inference. SIGKDD Explorations, 2000, 2(2): 66-75. 被引量:1

共引文献6

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部