期刊文献+

基于Meanshift和粒子滤波的目标跟踪方法 被引量:3

Object Tracking Method Based on Mean-shift and Particle Filter
下载PDF
导出
摘要 Meanshift是一种目标跟踪的有效算法。但是,当光照条件变化快或目标被遮挡的时候表现很差。与之相比,基于粒子滤波的目标跟踪有一个很好的表现,但是跟踪速度比Meanshift慢很多。由于使用单个算法的限制,本文提出了一种基于Meanshift和粒子滤波相结合的新的算法。此种方法构建了反馈系统,Meanshift技术被用于初始跟踪,当Meanshift的跟踪结果不可信时,通过粒子滤波来提高跟踪效果。RGB颜色直方图用于表征图像的特征,Bhattacharyya系数来衡量目标模型与候选模型的相似度。通过对不同视频的跟踪实验证明,提出的这种方法在目标发生移变、旋转、缩放时都能很好的表现,而且实现了一个满意的跟踪速度。 Meanshift is an effective algorithm for object tacking. However,it has a poor performance when the illumination condition changes fast or the tracking target are shadowed. By contract,particle filter based object tracking has a better tracking performance,but the tracking speed is much slower compared to mean-shift.Owing to the limitations of the use of a single algorithm,a novel object tracking method based on both meanshift and particle filter is proposed in this paper. A system with feedback has been constructed by the proposed method,in which the mean-shift technique is used for initial registration and the particle filter is called to improve the performance of tracking when the tracking result with meanshift is unconvincing. RGB color histogram is exploited as image feature and Bhattacharyya coefficient is used for measuring the similarity between object model and candidate regions. Tracking experiments on various videos show that the proposed method performs well and achieves a satisfying tracking speed when targeted objects go through shift-variant,rotation and scaling.
出处 《湖北第二师范学院学报》 2016年第2期22-26,共5页 Journal of Hubei University of Education
基金 湖北省教育厅科学技术研究计划优秀中青年人才项目资助(Q20121409)
关键词 目标跟踪 MEANSHIFT 粒子滤波 算法融合 object tracking mean-shift particle filter algorithm fusion
  • 相关文献

参考文献12

  • 1Ling Li,Yang Li,Yuan Luo,Research on Key Algorithm of Human Motion Tracking for Intelligent Rehabilitation System[C].Proceedings of 24th Chinese Control and Decision Conference,2012:1288-1292. 被引量:1
  • 2Xiang Zhang,Yuan Ming.An Improved Mean Shift Tracking Algorithm Based On Color And Texture Feature[C].Proceedings of the 2010 International Conference on Wavelet Analysis and Pattern Recognition,2010:38-43. 被引量:1
  • 3Du K,Ju Y,Jin Y.Mean Shift tracking algorithm with adaptive block color histogram[C].IEEE Transactions on Special Fund for Basic Scientific Research in the Central University,2012:2692-2695. 被引量:1
  • 4Jiawei He,Yingyun Yang,Multi-iterative Tracking Method using Meanshift Based on Kalman Filter[C].IEEE,2014:22-27. 被引量:1
  • 5Intekhab Alam,Object Tracking in Video Sequences Using Information Fusion Principles[C].IEEE Trans.On 5th Computer Science and Electronic Engineering Conference,2015:146-151. 被引量:1
  • 6Da Tang,Yu Jin Zhang,Combining Mean-shift and Particle Filter for Object Tracking[C].International Conference on Image and Graphics,2011:771-776. 被引量:1
  • 7张颖颖,王红娟,黄义定.基于Meanshift和粒子滤波的行人目标跟踪方法[J].计算机与现代化,2012(3):40-43. 被引量:7
  • 8马丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪[J].模式识别与人工智能,2006,19(6):787-793. 被引量:20
  • 9Kyuseo Han,Johnny Park,Avinash C.Kak,Robust Tracking of Articulated Human Movements through Component-based Multiple Instance Learning with Particle Filtering[C].IEEE,2011:847-853. 被引量:1
  • 10Wu lianhui,Zhang Guoyun,Guo Longyuan,Study The Improved CAMSHIFT Algorithm to Detect the Moving Object in Fisheye Image[C].IEEE Trans.On International Conference on Mechatronic Sciences,2013:1017-1020. 被引量:1

二级参考文献24

  • 1马丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪[J].模式识别与人工智能,2006,19(6):787-793. 被引量:20
  • 2Pérez P,Hue C,Vermaak J,et al.Color-based probabilistic tracking[C]//Proceedings of the 7th European Conference on Computer Vision.Copenhagen,2002:661-675. 被引量:1
  • 3Isard M,Blake A.Condensation-conditional density propagation for visual tracking[J].Int.J.Computer Vision,1998,29(1):5-28. 被引量:1
  • 4Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208. 被引量:1
  • 5Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2003,25(5):564-577. 被引量:1
  • 6Comaniciu D,Meer P.Mean shift:A robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619. 被引量:1
  • 7Deguch I K,Kawanaka O,Okatan I T.Object tracking by the mean shift of regional color distribution combined with the particle filter algorithm[C]//Pro.of 17th International Conference on Pattern Recognition.Cambridge:IEEE Computer Society,2004:506-509. 被引量:1
  • 8Shan C,Wei Y,Tan T,et al.Real time hand tracking by combining particle filtering and mean shift[C]//International Conference on Automatic Face and Gesture Recognition. 2004:669-674. 被引量:1
  • 9Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2005:886-893. 被引量:1
  • 10Mu Yadong,Yan Shuicheng,Liu Yi,et al.Discriminative local binary patterns for human detection in personal album[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2008:1-8. 被引量:1

共引文献24

同被引文献29

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部