期刊文献+

融合颜色纹理特征的自适应粒子滤波跟踪算法 被引量:4

An Improved Tracking Algorithm Combining Color and LBP Texture Features Based on Particle Filter
下载PDF
导出
摘要 针对复杂背景下,尤其是当光照条件发生变化以及目标发生遮挡时容易导致跟踪失败的问题,提出了一种基于自适应多特征融合的粒子滤波目标跟踪算法;该算法将RGB颜色直方图和LBP纹理直方图融合起来建立目标参考模型,并且引入Sigmoid函数动态调整两类子特征粒子的权重;仿真结果表明,该算法能在复杂背景下自适应调整两种子特征权重,以克服其中一种特征失效导致的跟踪失败,而且有效地避免了使用单一特征建模的缺点,能够实现更加准确的跟踪。 An adaptive tracking algorithm combining multi--cue based on particle filter is proposed to overcome the disadvantages of complex background, especially when the light changes or the target gets blocked, can easily lead to tracking failure. A color histogram and a texture histogram were combined to build the object' s reference model. Sigmoid kernel function is used to regulate the feature weight dy- namically. Simulation results demonstrate that, the tracker based on multi--cue particle works can adjust the two kinds of feature weights a daptively, effectively overcoming the disadvantages posed by modeling with a single feature and improving the accuracy of object tracking.
出处 《计算机测量与控制》 北大核心 2014年第4期1182-1184,1188,共4页 Computer Measurement &Control
基金 国家自然基金项目(61172185)
关键词 目标跟踪 粒子滤波 颜色特征 object tracking particle filtering color feature
  • 相关文献

参考文献10

二级参考文献50

  • 1孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 2CHENG Y. Mean shift, mode seeking, and clustering [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17 (8) : 790-799. 被引量:1
  • 3COMANICIU D, RAMESH V, MEER P. Kernelbased object tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25 ( 5 ) : 564-577. 被引量:1
  • 4YIMAZ A. Object tracking by asymmetric kernel mean-shift with automatic scale and orientation selection [C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007 : 1-6. 被引量:1
  • 5CHENXP, YUSHSH, MAZHL. An improved mean-shift algorithm for object tracking[C]. Proceedings of the 7 th World Congress on Intelligent Control and Automation, IEEE,2008:5111-5114. 被引量:1
  • 6BIRCHFIELD S T, RANGARAJAN S. Spatiograms versus histograms for region based tracking [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2005:1158-1163. 被引量:1
  • 7O'CONAIRE C, O'CONNOR N, SMEATON A F. An improved spatiogram similarity measure for robust object localization [C]. ICASSP, IEEE, 2007:1069-1072. 被引量:1
  • 8NUMMIARO K, KOLLER-MEIER E,VAN G L. Color features for tracking non-rigid object[J]. Special Issue on Vision Surveillance, 2003,29 ( 3 ) : 345-355. 被引量:1
  • 9WANG ZH Q, FAN Y F, ZHANG G L, et al.. Robust face tracking algorithm with occlusions [J]. SPIE, 2007,67861:67861X1-67861X10. 被引量:1
  • 10COLI.INS R T, LIU Y X. On-line selection of discriminative tracking features [C]. Proceedings of the Ninth IEEE International Conference on Computer Vision, IEEE, 2003 : 346-352. 被引量:1

共引文献356

同被引文献21

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部